
Chesapeake Large Scale Analytics Conference

FIREHOSE: Benchmarking Streaming
Architectures

Karl Anderson
Laboratory for Telecommunication Sciences

October 2016



What is stream processing for data?

I Mostly small compute, bit I/O (memory, network)

I Event driven processing
I Large branchy processes

I Conditional processing
I Reduce processing by short-circuiting processing stages
I hard to map to GPUs

I State Tracking / Correlation of data over time
I Random access memory lookups
I I/O bound processing

I Data level parallelism
I Data streams can be divided and processed independently
I Data shuffling to move data for correlation

I Pipeline parallelism
I Divide up processing stages, challenging to balance



Performance of Streaming Architectures

I Memory access is critical
I Random access lookups for state
I Cache for local event processing
I Data copies can be expensive

I Shared memory is key for thread scaling
I Thread to thread communication: around 1 million pointers

per second across a lock-free queue

I Message passing scales to cluster
I Distributed processing
I ZeroMQ, TCP, UDP
I Serialization can be a significant overhead



Why Benchmark Streaming Architectures?

I To understand the overhead of processing using a particular
architecture/system

I measure actual intended use vs marketing claims
I measure data models
I measure hardware, framework and communication overhead

I To diagnose scaling problems
I using data generation that can go beyond current data rates

I To measure various processing algorithms and approaches



Attributes of a good streaming benchmark

I Scalable stream rate
I Well-defined analytics that are easy to implement and

measure
I Impacts core capabilities of processing frameworks
I Ground truth is known

I Data quantities that overflow memory and force real-time
processes

I Allow for serial and parallel implementations

I Open and accessible



Measuring Streaming Architectures

I Ideally we want to measure
I Energy-use per data (Joules/data) for a given processing

system and data rate
I Power, space and cooling are key design features
I We have not done this yet



Issues in measuring streaming performance

I Problems in streaming architectures can often only be found
when running continuously for hours or days

I Resource limitations are not seen initially
I Memory fragmentation can reach catastrophic conditions
I Example: STL Hashtable resizing

I Not all processing is equivalent
I Exact vs. probabilistic
I Windowed vs. continuous



FIREHOSE Benchmark Package

I 3 Data Generators
I C code
I UDP packet output
I Multiple events per packet, millions of events per second

I Reference implementations of streaming analytics
I C++ and Python

I Testing Documentation, Ground Rules

I Available at
https://github.com/stream-benchmarking/firehose

https://github.com/stream-benchmarking/firehose


Reference Analytic

I Generate useful <key, value>pairs

I Examine data over time for each key (state)

I Trigger condition by accumulating values for each key

GOAL: measure the ability to perform data correlation



Generator One

The Story: Find anomalous keys that are producing biased values.
Values for each key are either 0 or 1 with a probability of 0.5 for
generating a value of 1 for most key. Some keys are chosen to be
biased and generate more zeros than ones.

The Reference Analytic

I Accumulate the first 24 values for each key

I Generate alert if observed sums less than 5
I Compare answer with a ground truth value in order to report

I true positives, false positives
I true negatives, false negatives



Generator One

Goal: measure basic processing and state tracking

I Continuous generator

I Fixed key space (100,000 total keys per generator)

I Skewed key emission
I UDP packet containing

I KEY(64bit), VALUE(0,1), Bias Truth(0,1)

Example:
322342123234, 0, 0
993248345234, 1, 0
323423422322, 0, 1
...



Generator Two

Goal: measure performance of state tracking and expiration

I Continuous generator
I Unbounded key space

I Active Set Size: 131,072 keys
I Number of events per key is chosen from a skewed distribution
I Space/time between reoccurring key events is chosen from a

trend curve
I Many keys only generated once
I No notification of key expiration inside generator

I Forces processing analytics to expire state
I Similar output to Generator One

I could use exact same processing analytic
I except keys are infinite, so expiration matters



Events per key

In order to simulate common datastreams, keys are generated from
a skewed distribution

I Most keys will not generate enough events to trigger analytic
reporting

I Only when a key has generated 24 events will an analytic be
required to report results



Intensity: Trend Curve

In order to simulate common datastreams, keys are spaced out
following a trend curve

I key spacing is implemented using a priority queue that allows
for control of when keys get generated

I When a key first starts out, its generation is spaced out
sparsely in the event stream

I Over the generation-life of a key, a key will increase and then
decrease in intensity

I Currently all keys-events are mapped from the same trend
curve



Generator 3 - two level active set

Goal: to measure multi-state data shuffles and simulate complex
event streams

I Continuous generator, unbounded keyspace
I Two levels of events

I Outer events used to build inner events
I Two skewed active-set generators are maintained for two

generators

I The outer generator emits < key , value > pairs
I values from the same outer key are pieced together to build

inner < key , value > events
I an inner < key , value > is made from 5 outer events

I Inner generator emits values that are 0 or 1 with potential bias

I An analytic that shuffles data for outer state tracking will
need to reshuffle for inner keys



Two level event stream

Event

Key(211)

Event

Key(120)

Event

Key(221)

Event

Key(111)

Event Stream



Two level event stream

State of Key(112) State of Key(113) State of Key(114)State of Key(111)

Event

Key(211)

State of Key(110)

Event

Key(120)

Event

Key(221)

Event

Key(111)

Event Stream



Generator Tuning

I Each generator can be configured to emit events at a
prescribed rate (events/sec)

I You can set the random seed for events
I deterministic testing

I Configure the number of receivers and UDP ports
I emits packets in round robin to each receiver

I Supports parallel generation
I each generator has independent key-spaces
I must start at same time via shell scripts



Parallel Generation

Generator
Streaming Framework

Input AnalyticGenerator

Generator

Many To One

Generator

Streaming Framework

Input AnalyticGenerator

Generator

One to Many

Input

Input

Generator

Streaming Framework

Input AnalyticGenerator

Generator

Many to Many

Input

Input

Generator

Generator



Measuring Results

I If the streaming analytic is performing correctly
I Measure packet/event receive rate (drop rate)
I Count total number of keys observed
I Count accuracy of anomaly detection

I Testing
I Ramp up rate until dropping less than 1% of packets
I Compare against reference implementations on same system

conditions



Benchmarking Results:
I Dell dual hex-core 3.47 GHz Intel Xeons (X5690)
I Maximum rates reported when rate reached no packet drops

Implementation Benchmark # Generators Rate (events/sec)

C++ #1 2 5.6M
Python #1 1 450K
Waterslide(serial) #1 5 12M
Phish(serial) #1 5 5.5M
Phish(parallel) #1 5 10M

C++ #2 1 1.9M
Python #2 1 140K
Waterslide(serial) #2 2 3.4
Phish(serial) #2 1 1.9
Phish(parallel) #2 2 3.4

C++ #3 1 1.5M
Waterslide(serial) #3 2 2.9M

Table: Reference Analytic Results



Waterslide Stream Framework

I An High-Speed framework for stream multi-threading

I Available as Open Source at
https://github.com/waterslideLTS/waterslide

I A C based modular system

I An agile BASH-like script-able language for specifying
workflows

I Scaling: A Multi-threaded pass-by-reference system
I Based on Sandia’s Q-Threads
I Stream-optimized garbage collector

I Multi-way expiring state tables
I Large scale key-value cache with LRU expiration

https://github.com/waterslideLTS/waterslide


Future Streaming Benchmarks

I Graph Generation
I Find triangles
I Find triangles that have the same number of events
I Find small connected components
I Find large temporally correlated groups (time/space clustering)

I missing: a graph generator than creates realistic streaming
graphs

I current experimentation: evolving E-R graphs



Special Thanks

I Steve Plimpton at Sandia - Firehose Benchmarking

I Waterslide Development team


