FIREHOSE: Benchmarking Streaming Architectures

Karl Anderson
Laboratory for Telecommunication Sciences

October 2016
What is stream processing for data?

- Mostly small compute, bit I/O (memory, network)
- Event driven processing
- Large branchy processes
 - Conditional processing
 - Reduce processing by short-circuiting processing stages
 - hard to map to GPUs
- State Tracking / Correlation of data over time
 - Random access memory lookups
 - I/O bound processing
- Data level parallelism
 - Data streams can be divided and processed independently
 - Data shuffling to move data for correlation
- Pipeline parallelism
 - Divide up processing stages, challenging to balance
Performance of Streaming Architectures

- Memory access is critical
 - Random access lookups for state
 - Cache for local event processing
 - Data copies can be expensive
- Shared memory is key for thread scaling
 - Thread to thread communication: around 1 million pointers per second across a lock-free queue
- Message passing scales to cluster
 - Distributed processing
 - ZeroMQ, TCP, UDP
 - Serialization can be a significant overhead
Why Benchmark Streaming Architectures?

- To understand the overhead of processing using a particular architecture/system
 - measure actual intended use vs marketing claims
 - measure data models
 - measure hardware, framework and communication overhead
- To diagnose scaling problems
 - using data generation that can go beyond current data rates
- To measure various processing algorithms and approaches
Attributes of a good streaming benchmark

- Scalable stream rate
- Well-defined analytics that are easy to implement and measure
 - Impacts core capabilities of processing frameworks
 - Ground truth is known
- Data quantities that overflow memory and force real-time processes
- Allow for serial and parallel implementations
- Open and accessible
Measuring Streaming Architectures

- Ideally we want to measure
 - Energy-use per data (Joules/data) for a given processing system and data rate
 - Power, space and cooling are key design features
 - We have not done this yet
Issues in measuring streaming performance

- Problems in streaming architectures can often only be found when running *continuously* for hours or days
 - Resource limitations are not seen initially
 - Memory fragmentation can reach catastrophic conditions
 - Example: STL Hashtable resizing
- Not all processing is equivalent
 - Exact vs. probabilistic
 - Windowed vs. continuous
FIREHOSE Benchmark Package

- 3 Data Generators
 - C code
 - UDP packet output
 - Multiple events per packet, millions of events per second

- Reference implementations of streaming analytics
 - C++ and Python

- Testing Documentation, Ground Rules

- Available at
 https://github.com/stream-benchmarking/firehose
Reference Analytic

- Generate useful <key, value> pairs
- Examine data over time for each key (state)
- Trigger condition by accumulating values for each key

GOAL: measure the ability to perform data correlation
Generator One

The Story: Find anomalous keys that are producing biased values. Values for each key are either 0 or 1 with a probability of 0.5 for generating a value of 1 for most key. Some keys are chosen to be biased and generate more zeros than ones.

The Reference Analytic

- Accumulate the first 24 values for each key
- Generate alert if observed sums less than 5
- Compare answer with a ground truth value in order to report
 - true positives, false positives
 - true negatives, false negatives
Generator One

Goal: measure basic processing and state tracking
 ▶ Continuous generator
 ▶ Fixed key space (100,000 total keys per generator)
 ▶ Skewed key emission
 ▶ UDP packet containing
 ▶ KEY(64bit), VALUE(0,1), Bias Truth(0,1)

Example:
322342123234, 0, 0
993248345234, 1, 0
323423422322, 0, 1
32423422322, 0, 1
...
Generator Two

Goal: measure performance of state tracking and expiration

- Continuous generator
- Unbounded key space
 - Active Set Size: 131,072 keys
 - Number of events per key is chosen from a skewed distribution
 - Space/time between reoccurring key events is chosen from a trend curve
 - Many keys only generated once
 - No notification of key expiration inside generator

- Forces processing analytics to expire state
- Similar output to Generator One
 - could use exact same processing analytic
 - except keys are infinite, so expiration matters
In order to simulate common datastreams, keys are generated from a skewed distribution

- Most keys will not generate enough events to trigger analytic reporting
- Only when a key has generated 24 events will an analytic be required to report results
Intensity: Trend Curve

In order to simulate common datastreams, keys are spaced out following a trend curve

- Key spacing is implemented using a priority queue that allows for control of when keys get generated
- When a key first starts out, its generation is spaced out sparsely in the event stream
- Over the generation-life of a key, a key will increase and then decrease in intensity
- Currently all keys-events are mapped from the same trend curve
Goal: to measure multi-state data shuffles and simulate complex event streams

- Continuous generator, unbounded keyspace
- Two levels of events
 - Outer events used to build inner events
 - Two skewed active-set generators are maintained for two generators
- The outer generator emits \(<key, value> \) pairs
 - values from the same outer key are pieced together to build inner \(<key, value> \) events
 - an inner \(<key, value> \) is made from 5 outer events
- Inner generator emits values that are 0 or 1 with potential bias
- An analytic that shuffles data for outer state tracking will need to reshuffle for inner keys
Two level event stream
Two level event stream

Event Stream
Generator Tuning

- Each generator can be configured to emit events at a prescribed rate (events/sec)
- You can set the random seed for events
 - deterministic testing
- Configure the number of receivers and UDP ports
 - emits packets in round robin to each receiver
- Supports parallel generation
 - each generator has independent key-spaces
 - must start at same time via shell scripts
Parallel Generation

Many To One

One to Many

Many to Many
Measuring Results

- If the streaming analytic is performing correctly
 - Measure packet/event receive rate (drop rate)
 - Count total number of keys observed
 - Count accuracy of anomaly detection

- Testing
 - Ramp up rate until dropping less than 1% of packets
 - Compare against reference implementations on same system conditions
Benchmarking Results:

- Dell dual hex-core 3.47 GHz Intel Xeons (X5690)
- Maximum rates reported when rate reached no packet drops

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Benchmark</th>
<th># Generators</th>
<th>Rate (events/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++</td>
<td>#1</td>
<td>2</td>
<td>5.6M</td>
</tr>
<tr>
<td>Python</td>
<td>#1</td>
<td>1</td>
<td>450K</td>
</tr>
<tr>
<td>Waterslide(serial)</td>
<td>#1</td>
<td>5</td>
<td>12M</td>
</tr>
<tr>
<td>Phish(serial)</td>
<td>#1</td>
<td>5</td>
<td>5.5M</td>
</tr>
<tr>
<td>Phish(parallel)</td>
<td>#1</td>
<td>5</td>
<td>10M</td>
</tr>
<tr>
<td>C++</td>
<td>#2</td>
<td>1</td>
<td>1.9M</td>
</tr>
<tr>
<td>Python</td>
<td>#2</td>
<td>1</td>
<td>140K</td>
</tr>
<tr>
<td>Waterslide(serial)</td>
<td>#2</td>
<td>2</td>
<td>3.4</td>
</tr>
<tr>
<td>Phish(serial)</td>
<td>#2</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td>Phish(parallel)</td>
<td>#2</td>
<td>2</td>
<td>3.4</td>
</tr>
<tr>
<td>C++</td>
<td>#3</td>
<td>1</td>
<td>1.5M</td>
</tr>
<tr>
<td>Waterslide(serial)</td>
<td>#3</td>
<td>2</td>
<td>2.9M</td>
</tr>
</tbody>
</table>

Table: Reference Analytic Results
Waterslide Stream Framework

- An High-Speed framework for stream multi-threading
- Available as Open Source at https://github.com/waterslideLTS/waterslide
- A C based modular system
- An agile BASH-like script-able language for specifying workflows
- Scaling: A Multi-threaded pass-by-reference system
 - Based on Sandia’s Q-Threads
 - Stream-optimized garbage collector
- Multi-way expiring state tables
 - Large scale key-value cache with LRU expiration
Future Streaming Benchmarks

- Graph Generation
 - Find triangles
 - Find triangles that have the same number of events
 - Find small connected components
 - Find large temporally correlated groups (time/space clustering)
- missing: a graph generator than creates realistic streaming graphs
- current experimentation: evolving E-R graphs
Special Thanks

- Steve Plimpton at Sandia - Firehose Benchmarking
- Waterslide Development team