Chesapeake Large Scale Analytics Conference

Jll-e

Y

FIREHOSE: Benchmarking Streaming
Architectures

Karl Anderson
Laboratory for Telecommunication Sciences

October 2016

What is stream processing for data?

» Mostly small compute, bit I/O (memory, network)
» Event driven processing
» Large branchy processes
» Conditional processing
» Reduce processing by short-circuiting processing stages
» hard to map to GPUs
» State Tracking / Correlation of data over time
» Random access memory lookups
» |/O bound processing
» Data level parallelism
» Data streams can be divided and processed independently
» Data shuffling to move data for correlation
> Pipeline parallelism

» Divide up processing stages, challenging to balance

Performance of Streaming Architectures

» Memory access is critical

» Random access lookups for state
» Cache for local event processing
» Data copies can be expensive

» Shared memory is key for thread scaling

» Thread to thread communication: around 1 million pointers
per second across a lock-free queue

» Message passing scales to cluster

» Distributed processing
» ZeroMQ, TCP, UDP
» Serialization can be a significant overhead

Why Benchmark Streaming Architectures?

» To understand the overhead of processing using a particular
architecture/system

» measure actual intended use vs marketing claims
» measure data models
» measure hardware, framework and communication overhead

» To diagnose scaling problems
> using data generation that can go beyond current data rates

» To measure various processing algorithms and approaches

Attributes of a good streaming benchmark

» Scalable stream rate

> Well-defined analytics that are easy to implement and
measure

» Impacts core capabilities of processing frameworks
» Ground truth is known

» Data quantities that overflow memory and force real-time
processes

> Allow for serial and parallel implementations

» Open and accessible

Measuring Streaming Architectures

> ldeally we want to measure
» Energy-use per data (Joules/data) for a given processing
system and data rate
» Power, space and cooling are key design features
» We have not done this yet

Issues in measuring streaming performance

» Problems in streaming architectures can often only be found
when running continuously for hours or days
» Resource limitations are not seen initially
» Memory fragmentation can reach catastrophic conditions
» Example: STL Hashtable resizing
» Not all processing is equivalent

» Exact vs. probabilistic
» Windowed vs. continuous

FIREHOSE Benchmark Package

3 Data Generators

» C code
» UDP packet output
» Multiple events per packet, millions of events per second

v

v

Reference implementations of streaming analytics
» C++ and Python

v

Testing Documentation, Ground Rules

Available at
https://github.com/stream-benchmarking/firehose

v

https://github.com/stream-benchmarking/firehose

Reference Analytic

> Generate useful <key, value>pairs
» Examine data over time for each key (state)

» Trigger condition by accumulating values for each key

GOAL: measure the ability to perform data correlation

Generator One

The Story: Find anomalous keys that are producing biased values.
Values for each key are either 0 or 1 with a probability of 0.5 for
generating a value of 1 for most key. Some keys are chosen to be
biased and generate more zeros than ones.

The Reference Analytic
» Accumulate the first 24 values for each key
> Generate alert if observed sums less than 5
» Compare answer with a ground truth value in order to report

> true positives, false positives
» true negatives, false negatives

Generator One

Goal: measure basic processing and state tracking

» Continuous generator

» Fixed key space (100,000 total keys per generator)

» Skewed key emission

» UDP packet containing

» KEY/(64bit), VALUE(0,1), Bias Truth(0,1)

Example:
322342123234, 0, 0

093248345234, 1, 0
323423422322, 0, 1

Generator Two

Goal: measure performance of state tracking and expiration

» Continuous generator

v

Unbounded key space
» Active Set Size: 131,072 keys
» Number of events per key is chosen from a skewed distribution
» Space/time between reoccurring key events is chosen from a
trend curve
» Many keys only generated once
» No notification of key expiration inside generator

v

Forces processing analytics to expire state
Similar output to Generator One

» could use exact same processing analytic
> except keys are infinite, so expiration matters

v

Events per key

In order to simulate common datastreams, keys are generated from
a skewed distribution

» Most keys will not generate enough events to trigger analytic
reporting

> Only when a key has generated 24 events will an analytic be
required to report results

Intensity: Trend Curve

In order to simulate common datastreams, keys are spaced out
following a trend curve

> key spacing is implemented using a priority queue that allows
for control of when keys get generated

» When a key first starts out, its generation is spaced out
sparsely in the event stream

» Over the generation-life of a key, a key will increase and then
decrease in intensity

» Currently all keys-events are mapped from the same trend
curve

Generator 3 - two level active set

Goal: to measure multi-state data shuffles and simulate complex
event streams
» Continuous generator, unbounded keyspace
> Two levels of events
» OQuter events used to build inner events
» Two skewed active-set generators are maintained for two
generators
» The outer generator emits < key, value > pairs

> values from the same outer key are pieced together to build
inner < key, value > events
> an inner < key, value > is made from 5 outer events

> Inner generator emits values that are 0 or 1 with potential bias

» An analytic that shuffles data for outer state tracking will
need to reshuffle for inner keys

Two level event stream

Event Stream

DA

Two level event stream

Event Stream m
4
4
L4
4
4
04
&
State of Key(110) | | State of Key(111) 'Sﬂ'-:te of Key(112) State of Key(113) | | State of Key(114)
— w ' E —

Generator Tuning

v

Each generator can be configured to emit events at a
prescribed rate (events/sec)

> You can set the random seed for events

» deterministic testing

v

Configure the number of receivers and UDP ports
» emits packets in round robin to each receiver

v

Supports parallel generation

» each generator has independent key-spaces
» must start at same time via shell scripts

Parallel Generation

Streaming Framework

o [

Streaming Framework
Input

N

e . Input = Analytic e P, INPUt — Analytic
Many To One One to Many

Streaming Framework

N\

INPUt —mp- Analytic

-~

— > Input

Generator

Generator

Generator Input

Many to Many

Measuring Results

» If the streaming analytic is performing correctly
» Measure packet/event receive rate (drop rate)
» Count total number of keys observed
» Count accuracy of anomaly detection
» Testing
» Ramp up rate until dropping less than 1% of packets

» Compare against reference implementations on same system
conditions

Benchmarking Results:

> Dell dual hex-core 3.47 GHz Intel Xeons (X5690)
» Maximum rates reported when rate reached no packet drops

Implementation ‘ Benchmark ‘ # Generators ‘ Rate (events/sec)
C++ #1 2 5.6M
Python #1 1 450K
Waterslide(serial) #1 5 12M
Phish(serial) #1 5 5.5M
Phish(parallel) #1 5 10M
C++ #2 1 1.9M
Python #2 1 140K
Waterslide(serial) #2 2 3.4
Phish(serial) #2 1 1.9
Phish(parallel) #2 2 3.4
C++ #3 1 1.5M
Waterslide(serial) #3 2 2.9M

Table: Reference Analytic Results

Waterslide Stream Framework

» An High-Speed framework for stream multi-threading

» Available as Open Source at
https://github.com/waterslidelLTS/waterslide

» A C based modular system

> An agile BASH-like script-able language for specifying
workflows

» Scaling: A Multi-threaded pass-by-reference system

» Based on Sandia’s Q-Threads
» Stream-optimized garbage collector

» Multi-way expiring state tables
> Large scale key-value cache with LRU expiration

https://github.com/waterslideLTS/waterslide

Future Streaming Benchmarks

» Graph Generation
» Find triangles
Find triangles that have the same number of events
Find small connected components
Find large temporally correlated groups (time/space clustering)

v vYyy

> missing: a graph generator than creates realistic streaming
graphs
> current experimentation: evolving E-R graphs

Special Thanks

» Steve Plimpton at Sandia - Firehose Benchmarking

» Waterslide Development team

