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What is stream processing for data?

I Mostly small compute, bit I/O (memory, network)

I Event driven processing
I Large branchy processes

I Conditional processing
I Reduce processing by short-circuiting processing stages
I hard to map to GPUs

I State Tracking / Correlation of data over time
I Random access memory lookups
I I/O bound processing

I Data level parallelism
I Data streams can be divided and processed independently
I Data shuffling to move data for correlation

I Pipeline parallelism
I Divide up processing stages, challenging to balance



Performance of Streaming Architectures

I Memory access is critical
I Random access lookups for state
I Cache for local event processing
I Data copies can be expensive

I Shared memory is key for thread scaling
I Thread to thread communication: around 1 million pointers

per second across a lock-free queue

I Message passing scales to cluster
I Distributed processing
I ZeroMQ, TCP, UDP
I Serialization can be a significant overhead



Why Benchmark Streaming Architectures?

I To understand the overhead of processing using a particular
architecture/system

I measure actual intended use vs marketing claims
I measure data models
I measure hardware, framework and communication overhead

I To diagnose scaling problems
I using data generation that can go beyond current data rates

I To measure various processing algorithms and approaches



Attributes of a good streaming benchmark

I Scalable stream rate
I Well-defined analytics that are easy to implement and

measure
I Impacts core capabilities of processing frameworks
I Ground truth is known

I Data quantities that overflow memory and force real-time
processes

I Allow for serial and parallel implementations

I Open and accessible



Measuring Streaming Architectures

I Ideally we want to measure
I Energy-use per data (Joules/data) for a given processing

system and data rate
I Power, space and cooling are key design features
I We have not done this yet



Issues in measuring streaming performance

I Problems in streaming architectures can often only be found
when running continuously for hours or days

I Resource limitations are not seen initially
I Memory fragmentation can reach catastrophic conditions
I Example: STL Hashtable resizing

I Not all processing is equivalent
I Exact vs. probabilistic
I Windowed vs. continuous



FIREHOSE Benchmark Package

I 3 Data Generators
I C code
I UDP packet output
I Multiple events per packet, millions of events per second

I Reference implementations of streaming analytics
I C++ and Python

I Testing Documentation, Ground Rules

I Available at
https://github.com/stream-benchmarking/firehose

https://github.com/stream-benchmarking/firehose


Reference Analytic

I Generate useful <key, value>pairs

I Examine data over time for each key (state)

I Trigger condition by accumulating values for each key

GOAL: measure the ability to perform data correlation



Generator One

The Story: Find anomalous keys that are producing biased values.
Values for each key are either 0 or 1 with a probability of 0.5 for
generating a value of 1 for most key. Some keys are chosen to be
biased and generate more zeros than ones.

The Reference Analytic

I Accumulate the first 24 values for each key

I Generate alert if observed sums less than 5
I Compare answer with a ground truth value in order to report

I true positives, false positives
I true negatives, false negatives



Generator One

Goal: measure basic processing and state tracking

I Continuous generator

I Fixed key space (100,000 total keys per generator)

I Skewed key emission
I UDP packet containing

I KEY(64bit), VALUE(0,1), Bias Truth(0,1)

Example:
322342123234, 0, 0
993248345234, 1, 0
323423422322, 0, 1
...



Generator Two

Goal: measure performance of state tracking and expiration

I Continuous generator
I Unbounded key space

I Active Set Size: 131,072 keys
I Number of events per key is chosen from a skewed distribution
I Space/time between reoccurring key events is chosen from a

trend curve
I Many keys only generated once
I No notification of key expiration inside generator

I Forces processing analytics to expire state
I Similar output to Generator One

I could use exact same processing analytic
I except keys are infinite, so expiration matters



Events per key

In order to simulate common datastreams, keys are generated from
a skewed distribution

I Most keys will not generate enough events to trigger analytic
reporting

I Only when a key has generated 24 events will an analytic be
required to report results



Intensity: Trend Curve

In order to simulate common datastreams, keys are spaced out
following a trend curve

I key spacing is implemented using a priority queue that allows
for control of when keys get generated

I When a key first starts out, its generation is spaced out
sparsely in the event stream

I Over the generation-life of a key, a key will increase and then
decrease in intensity

I Currently all keys-events are mapped from the same trend
curve



Generator 3 - two level active set

Goal: to measure multi-state data shuffles and simulate complex
event streams

I Continuous generator, unbounded keyspace
I Two levels of events

I Outer events used to build inner events
I Two skewed active-set generators are maintained for two

generators

I The outer generator emits < key , value > pairs
I values from the same outer key are pieced together to build

inner < key , value > events
I an inner < key , value > is made from 5 outer events

I Inner generator emits values that are 0 or 1 with potential bias

I An analytic that shuffles data for outer state tracking will
need to reshuffle for inner keys



Two level event stream
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Two level event stream
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Generator Tuning

I Each generator can be configured to emit events at a
prescribed rate (events/sec)

I You can set the random seed for events
I deterministic testing

I Configure the number of receivers and UDP ports
I emits packets in round robin to each receiver

I Supports parallel generation
I each generator has independent key-spaces
I must start at same time via shell scripts



Parallel Generation
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Measuring Results

I If the streaming analytic is performing correctly
I Measure packet/event receive rate (drop rate)
I Count total number of keys observed
I Count accuracy of anomaly detection

I Testing
I Ramp up rate until dropping less than 1% of packets
I Compare against reference implementations on same system

conditions



Benchmarking Results:
I Dell dual hex-core 3.47 GHz Intel Xeons (X5690)
I Maximum rates reported when rate reached no packet drops

Implementation Benchmark # Generators Rate (events/sec)

C++ #1 2 5.6M
Python #1 1 450K
Waterslide(serial) #1 5 12M
Phish(serial) #1 5 5.5M
Phish(parallel) #1 5 10M

C++ #2 1 1.9M
Python #2 1 140K
Waterslide(serial) #2 2 3.4
Phish(serial) #2 1 1.9
Phish(parallel) #2 2 3.4

C++ #3 1 1.5M
Waterslide(serial) #3 2 2.9M

Table: Reference Analytic Results



Waterslide Stream Framework

I An High-Speed framework for stream multi-threading

I Available as Open Source at
https://github.com/waterslideLTS/waterslide

I A C based modular system

I An agile BASH-like script-able language for specifying
workflows

I Scaling: A Multi-threaded pass-by-reference system
I Based on Sandia’s Q-Threads
I Stream-optimized garbage collector

I Multi-way expiring state tables
I Large scale key-value cache with LRU expiration

https://github.com/waterslideLTS/waterslide


Future Streaming Benchmarks

I Graph Generation
I Find triangles
I Find triangles that have the same number of events
I Find small connected components
I Find large temporally correlated groups (time/space clustering)

I missing: a graph generator than creates realistic streaming
graphs

I current experimentation: evolving E-R graphs
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