Scalable Complex Analytics and DBMSs

Michael Stonebraker
Simple Analytics

- **SQL operations**
 - count, sum, max, min, avg
 - Optional group_by

- **Defined on tables**

- **User interface is Business Intelligence Tools**
 - Cognos, Business Objects, ...

- **Appropriate for traditional business applications**
Simple Analytics

- Well served by the data warehouse crowd
- Who are good at this stuff
 - even on petabytes
Complex Analytics

- Machine learning
- Data clustering
- Predictive models
- Recommendation engines
- Regressions
- Estimators
Complex Analytics

• By and large, they are defined on arrays
• As collections of linear algebra operations
• They are not in SQL!
• And often
 - Are defined on large amounts of data
 - And/or in high dimensions
Complex Analytics on Array Data - An Accessible Example

• Consider the closing price on all trading days for the last 20 years for two stocks A and B

• What is the covariance between the two time-series?

\[
\frac{1}{N} \times \sum (A_j - \text{mean}(A)) \times (B_j - \text{mean}(B))
\]
Now Make It Interesting ...

- Do this for all pairs of 15000 stocks
 - The data is the following 15000 x 4000 matrix

<table>
<thead>
<tr>
<th>Stock</th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>t_5</th>
<th>t_6</th>
<th>t_7</th>
<th>\ldots</th>
<th>t_{4000}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{15000}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Array Answer

• Ignoring the \((1/N)\) and subtracting off the means

\[\text{Stock} \ast \text{Stock}^T \]
Use Case Requirements

• Complex analytics
 - Covariance is just the start
 - Defined on arrays
 - Graphs are just sparse arrays

• Data management
 - Leave out outliers
 - Just on securities with a market cap over $10B

• Scalability to many cores, many nodes and out-of-memory data
Data Scientist Job Description

• Ignore the 80 - 90% of the time spent cleaning and assembling the data
 – Separate talk on data curation

• Until (tired) {
 Data management operation(s);
 Complex analytics operations(s);
}
Solution Options for Data Management

• Hard Code
 - Separate stack from the bare metal up for each project (LHS is 40M lines of code)
 - No uniform treatment of meta data (often encoded in the file name)
 - Can’t share data easily
 - Depends on the “cheap PostDoc” model
Solution Options for Data Management

• Use a DBMS
 – Get sharing, indexing, protection, queries, crash recovery,

• Please, please, please use a DBMS
 – If you get nothing else from this talk, please take note of this!
 – Take a page from the business data processing playbook!

• Yabut - I can code a faster solution
 – But you are dooming your successor to maintaining it!
 – And requirements change!!!!
DBMS Options

• Traditional row store (Postgres, MySQL, Oracle, Big Table, …)
 – Stores the data on disk row-by-row
 – Not competitive on data intensive queries
 – For a collection of very good technical reasons
DBMS Options

• Column store (Vertica, Red Shift, DB2-Blu, Impala, ...)
 - Store the data column-by-column
 - Easier to compress; much faster executor; often read less than all columns
 - Generally 50 X row stores on this kind of stuff

• In the data warehouse market
 - This technology is in the process of completely taking over
DBMS Options

• Array store (SciDB, Rasdaman, HDF-5)
 - Data model is an array, not a table
 - Query language is typically array-SQL
 - Store the data in multi-dimensional tiles (chunks)

• Advantages
 - Same conceptual model as linear algebra
 - No table to array conversion required (which is very slow)
 - Dimensions are not stored (space advantage)
 - Multi-dimensional queries are very very fast, since the storage structure is “chunked”
Array Query Language (AQL)

```
SELECT Geo-Mean ( T.B )
FROM Test_Array T
WHERE
    T.I BETWEEN :C1 AND :C2
    AND T.J BETWEEN :C3 AND :C4
    AND T.A = 10
GROUP BY T.I;
```

- User-defined aggregate on an attribute B in array T
- Subsample
- Filter
- Group-by
DBMS Options

• Map-Reduce (open source version is Hadoop)
 - Good for embarassingly parallel problems only
 - Which this stuff is not!!!
 - Abandoned by Google in 2011 (or so)
 - Cloudera has a DBMS (Impala) - NOT built on Map-Reduce

• This interface is essentially dead
Two Things to Keep in Mind (1) (Data Base 101)

- **Always send the query to the data (Kbytes)**
 - Minimizes data comm

- **Do not bring the data to the query (Tbytes)!**
 - Forward pointer to HPC
Two Things to Keep in Mind (2)

- On matrix multiply, there are five orders of magnitude difference between Python and Intel-optimized C++
- Example
 - One order of magnitude between LaPack/BLAS/MKL and “smart Russians in C++”
 - Java is another order of magnitude down (Spark, Mahout, ...)
- Very difficult to compete with optimized packages and Intel engineers!!!
Analytics Options

• Code in SQL
 - Matrix multiply is a 3-way self join
 - If the data is sparse enough, this may be ok
 - On dense data this will be a disaster (SQL and Python are likely to have similar performance)

• Madlib is a package that did this
 - And was quickly recoded in C++

• Bill Howe will probably have a different opinion
 - I suspect
Analytics Options (Loose Integration)

- Code in a stat package (R, SAS, SPSS, Mahout, ...)
 - Copy the world from the DBMS to the package (slow)
 - Learn 2 interfaces
 - You’re in the plumbing business!
 - Parallel packages are just coming into existence
 - Most stat packages are main-memory only

- I don’t like this option at all!
 - Long term slog through the swamp
Analytics Options (Tight Integration)

• Run stat code as a user-defined function
 – Inside the DBMS
 – Called through extensions to SQL
Example Query

```
SELECT A.i * B.j
FROM A, B
WHERE
    A.k > 100 and
    B.m < 200
```
Analytics Options (Tight Integration)

- Learn one interface
- No “copy the world” problem
- Run stat code as a user-defined function
 - Inside the DBMS
 - Automatic parallelism (at least in SciDB)
(Some of the) Detailed Options

- **Loose coupling**
 - \{R, SAS, SPSS\} + your favorite DBMS

- **Tight coupling**
 - SciDB + Scalapack
 - SciDB + R
 - Vertica + R
A Note on Hadoop/HDFS

• Impala is not coded on top of HDFS
 – Drills through to underlying Linux files
 – Looks exactly like a parallel column store (e.g. Vertica, Redshift, ...)

• “Hadoop market” and “data warehouse market” are converging

• Current marketing slogan is “data lakes”
 – Creates a data swamp by ignoring data curation issues
 – Or a junk drawer
A Note on Spark

- 70+% of Spark access is SparkSQL
- However, Spark has
 - No persistence
 - No meta data
 - No main memory sharing
 - Java (slow)
- I expect all of this to get fixed over time
 - And Spark will follow the trajectory of Hadoop to become a data warehouse market
- Remainder is Scala (slow)
 - Remains to be seen how Spark will play in the general distributed computing space....
Issues in Using ScalaPack in SciDB

• **Block cyclic organization**
 - which DBMS does not support

• **MKL**
 - Which DBMSs won’t use for crash recovery issues

• **Tile organization**
 - Scalapack is dense-only
 - SciDB is a single format for dense and sparse
The Future

- Co-design of analytics and DBMS storage organization
 - To get rid of these issues
 - Intel-supported project at MIT and UTenn
An Exercise at NERSC

- General NERSC architecture is
 - A compute server
 - A storage server
 - A compute-side file cache; scheduled in advance
Issues

- DBMS wants to be “always on” service
 - Incompatible with scheduling the file cache
- Send the data to the query not the other way around
 - Every time somebody wants data access, need to move the world
At NERSC

- SciDB runs
 - Managing many, many Tbytes of data
 - On dedicated nodes

- Could not get Vertica to run at all
 - Painful aspects of batch job focus (scheduling the file cache; open file limit)
Summary

• Stand on the shoulders of those who went before you, not on their feet
 – Please don’t write a complete stack for each new project

• Want to tightly couple DBMSs and linear algebra
 – Or you get 2 interfaces
 – And copy the world
Summary

- Array DBMSs are likely to be attractive
 - Check out SciDB.org
- Hadoop and Spark will probably morph into something that looks like a DBMS
 - Turkey performance in the meantime
- HPC needs to become interactive
 - Or DBMSs probably won’t run there