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Profile of CSE: Mission
• Solve real-world problems and improve quality 

of life through advances in computational 
modeling methods and techniques.

• Apply a collaborative approach to solve hard 
problems in novel ways through interdisciplinary 
cooperation and external partnerships.

• Create leaders in government, industry, and 
academia who will support and advance 
science and engineering agendas.
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Profile of CSE: History
• Founded in 2005, officially recognized as a 

school in 2010.

• Focus on high performance computing, 
big data, analytics & visualization, machine 
learning, cybersecurity.

• $6.00 million in research expenditures; 
approximately $34 million in active awards 
(FY 2016)

• NSF South Big Data Hub partnership: $1.25 
million over 3 years to support new analysis 
projects in line with CSE mission.
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Profile of CSE: People
• By the numbers (Fall 2016): 

– 40 faculty and staff 
(12 tenure-track faculty)
– 68 PhD students 
– 99 masters students

• Award-winning research teams: ACM Gordon 
Bell Prize awarded to team composed mainly of 
CSE faculty and students.
– Other honors include: 1 Regents’ professor, 6 NSF 

CAREER awards , 3 IEEE fellows, 2 AAAS fellows, 
and 1 SIAM fellow
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2015-2016 Strategic Partnership Program
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• Georgia Tech is building Coda, a multi‐story, 750,000‐square‐foot HPC building in the 
heart of Atlanta (Midtown) with a targeted opening in January 2019

• Devoted to data science and high‐performance computing for centralized collaboration 
among industry, academia and government

• Location of CSE, IDEAS and the HPC Center, and the South BD Hub
• Georgia Tech is the anchor tenant, taking approximately one‐half of the new 

development. Remaining space will be for corporate entities and partners. 
• The Institute plans to locate academic and leading‐edge research programs in 

computing and advanced big data analytics there. 
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National Strategic Computing Initiative

• (29 July 2015, The White House) The National Strategic Computing Initiative (NSCI) is an 
effort to create a cohesive, multi‐agency strategic vision and Federal investment strategy in 
high‐performance computing (HPC). 

• This strategy will be executed in collaboration with industry and academia, maximizing the 
benefits of HPC for the United States. 

• HPC systems, through a combination of processing capability and storage capacity, can solve 
computational problems that are beyond the capability of small‐ to medium‐scale systems. 
They are vital to the Nation’s interests in science, medicine, engineering, technology, and 
industry. 

• The NSCI will spur the creation and deployment of computing technology at the leading 
edge, helping to advance Administration priorities for economic competiveness, scientific 
discovery, and national security. 

• The National Strategic Computing Initiative has five strategic themes.
1. Create systems that can apply exaflops of computing power to exabytes of data. 
2. Keep the United States at the forefront of HPC capabilities. 
3. Improve HPC application developer productivity.
4. Make HPC readily available. 
5. Establish hardware technology for future HPC systems. 
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NSCI Anniversary Meeting, 29 July 2016
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STING Initiative:
Focusing on Globally Significant Grand Challenges

• Many globally-significant grand challenges can be modeled by Spatio-
Temporal Interaction Networks and Graphs (or “STING”).  

• Emerging real-world graph problems include
– detecting community structure in large social networks, 
– defending the nation against cyber-based attacks, 
– discovering insider threats (e.g. Ft. Hood shooter, WikiLeaks),
– improving the resilience of the electric power grid, and 
– detecting and preventing disease in human populations.  

• Unlike traditional applications in computational science and engineering, 
solving these problems at scale often raises new research challenges 
because of sparsity and the lack of locality in the massive data, design of 
parallel algorithms for massive, streaming data analytics, and the need 
for new exascale supercomputers that are energy-efficient, resilient, and 
easy-to-program. 
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STINGER – Time Frame
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STINGER is officially 
proposed. May 2009

First prototype, clustering 
coefficients. Apr 2010

Structure tracking of 
streaming social 
networks. Apr 2011

High Performance Data 
Structure for Streaming 
Graphs. Sep 2012.
HPEC BEST PAPER AWARD 

Dynamic betweenness
centrality algorithm, 
Sep 2012

Streaming connected 
component, Dec 2013

Performance 
evaluation of open-
source graph data-
bases, Feb 2014

Community detection in 
dynamic networks  Sep 
2015

PageRank for 
Streaming Graphs. 
May 2016

Streaming graph need 
arises (over a decade 
ago)



Streaming graph example

• Dynamic/Streaming:
– At time :

• ݒ and ݓ become friends
• ,ݒሺ	ݐݎ݁ݏ݊ܫ ሻݓ

– At time :
• ݑ upsets	ݒ. ݑ		 and	ݒ	݁ݎܽ no	
longer	friends

• 	݁ݐ݈݁݁ܦ ,ݑ ݒ

• small subgraph…
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Traditional HPC Vs. Streaming Analytics

Traditional HPC

• Great for “static” data sets.
• Massive scalability at the 

cost of programmability.
• Great for dense problems.

– Sparse problems typically 
underutilize the system.

Streaming Analytics

• Requires specialized 
analytics and data structures.

• Data is constantly changing.
• Low data re-usage.

– Focused on memory operations 
and not FLOPS. 

David A. Bader 14



STING Extensible Representation (STINGER)

• Design goals:
– Enable algorithm designers to implement dynamic graph 

algorithms with ease.
– Portable semantics for various platforms
– Good performance for all types of graph problems and 

algorithms - static and dynamic.
– Assumes globally addressable memory access
– Support multiple, parallel readers and a single writer

• One server manages the graph data structures
• Multiple analytics run in background with read-only 

permissions. 
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STING Extensible Representation

• Semi-dense edge 
list blocks with free 
space

• Compactly stores 
timestamps, types, 
weights

• Maps from 
application IDs to 
storage IDs

• Deletion by negating 
IDs, separate 
compaction

David A. Bader 16



Streaming Updates
Update process

• Group updates into batches
– Updates can include insertions 

and deletions
– Big batches ⇒	 Better 

performances

[HPEC; 2012]

Throughput rate

David A. Bader 17

Experiment setup

• 4x10 Intel E7-8870 processors
• RMAT Graph 

– Vertices: 16M
– Edges: 128M 

• Various batch sizes
– ~93% of updates are insertions
– ~7% of updates are deletions

Takeaway
• STINGER supports extremely fast 

updates.
• Updates are not the bottleneck for 

analytics.
– Analytic computations are the bottleneck!

• Highly scalable



Streaming Clustering
Coefficients & Triangle Counting
Background

• Scores how tightly bound players are in 
their local community.

• Looks for common relationships for two 
adjacent vertices.

– Hence the term triangle counting

• Complexity for static graph algorithm 
(intersection based): ܱ ݒ ⋅ ݀௠௔௫ଶ

[MTAAP; 2010]
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Multiple streaming 
implementations
• Brute-force – straightforward and exact
• Bloom-filter – approximate yet extremely fast
• Sorted-list – uses intersections. Fast and 

exact. 
Larger batches give faster speedups.

Experiment setup
• Executed on two systems

– Cray XMT – 64 nodes
– 2x4 Intel E5530  system

• 8 cores, 16 threads

• Used RMAT synthetic graphs
– 2M vertices, 16 edges

• Hundreds of thousands updates per second



Streaming Connected Components
Background

• Tracks connected components 
in high velocity networks.

• Connected components imply 
that players are connected to 
each other some sequence of 
relationships

[HiPC; 2013]

David A. Bader 19

Our algorithm

• Takes into account small-world 
property

– Diameter is a small.
– Most players have numerous 

relationships within the connected 
component.

– Edge insertions are always easy.
– Very edge deletions are complex.

Takeaway
• Up to 1.26 million updates per second 

on 4 ൈ 16 AMD (Opteron 6282)
• Hundreds of time faster than static 

computation.
• Great for social networks.
• STINGER requires only 10% of execution 

time. Rest of time - analytic update.
• Scalability similar to BFS.

Average edge degree:



Dynamic Betweenness Centrality 
Background

• Used for finding key players in 
network based on the number of 
relationships that go through them.

• Fastest known algorithm by Brandes
(2002) is still computationally  
expensive for large networks: 
ܱ ܸ ⋅ ܸ ൅ ܧ .

[Social Computing; 2012]
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Our dynamic graph algorithm

• Supports optimizations:
– Approximation: reduces accuracy, 

significantly faster.
– Parallelization: utilizes many core 

systems

• Supports: vertex insertions & 
deletions and edge insertions & 
deletions.

Experimental setup and takeaways

• 4x10 Intel E7-8870 processors
• Thousands of times faster than static 

recomputations.
• Significantly reduces the amount of 

necessary computations.
• Only small percentage of the graph is 

affected due to update



Streaming Community 
Detection and Monitoring
Background

• Communities are typically defined by 
groups of vertices with more intra-
relationships than inter-relationships.

– More formally: ܳ ܥ ൌ ூ௡௧௥௔಴
ா

െ ூ௡௧௘௥಴
మ

|ா|మ

• In addition to the graph, an additional 
community network is maintained.

– Significantly smaller than full network!
– Updates applied to community network.

[MTAAP; 2013]
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An agglomerative approach

• Certain types of updates do not 
change the community structure.

– We only need to process updates 
that “might” cause change.

– Few updates require a lot of 
process time.

Experimental setup and takeaways

• 4x8 Intel E7-4820  system
– 32 cores, 64 threads

• Easily supports millions of updates per second.
• Bigger batches offer improved performance.
• Dynamic algorithm is 1000s of time faster than 

static graph algorithm.
• Real-time tracking of communities with a network.



Streaming Seed-Set Expansion
Background

• Seeds are vertices of interest.
• Seed Set Expansion is the process of 

detecting a community around a seed.
• Streaming SSE – allows tracking vertices 

of interest over time
– Important events such as community 

split and merging can be reported

[ASONAM;2015]
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Algorithm details
• Greedy algorithm.

– Vertices are inserted one at a time into the 
community.

• An edge update checks for possible changes 
in the community.

• Pruning can be applied when an update 
causes a big change in the community.

– Pruning makes things slower
– Pruning offers more accurate results in 

comparison with static graph algorithm.

Takeaways

• Highly accurate in comparison to 
static graph algorithm.
– Precision and recall typically 

above 90%.
• Larger batches require more 

work	⇒ smaller speedups



Incremental Page-Rank
Background

• Pagerank is used by measuring the 
importance of vertices by the 
number and weight of links going 
through it.

• Works like a propagation algorithm.
– Algorithm continues until no 

changes are detected.

[GABB;2016]
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Algorithm

• Uses STINGER to perform linear algebra 
operations.

• Supports both insertions and deletions.
• Incremental implies that only a small 

subset of the graph is traversed.
– Does only the necessary amount of work

Takeaway
• Large batches: reduce lower latency by > 

2× over restarting on average.
• Small batches: potentially hundreds of 

time faster than restart.
• Improved power performance (modeled).
• Can deal with several thousand updates 

per second.



Community Centric Analysis (in process)
Background
• Focuses on finding key players in communities

– Might be overlooked by network wide analytics.
– Computationally less expensive.
– Highly scalable
– Key players detected due to change to their 

community upon extraction.

• We  modify several widely used analytics for 
this new type of computation.

• Starts off with an initial exploration of static 
graphs

Modified metrics of interest
• Change in community modularity
• Change to the community diameter
• Change in the number of connected 

components in the community
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Community Centric Approach
• Given a community ܥ and a metric ܯ, for each vertex 

ݑ in each community ܥ:
– Calculate initial metric ܯ௜௡௜௧௜௔௟ on community (left 

figure) using static graph algorithm (done once)
– Remove vertex ݑ and links using STINGER
– Calculate changed metric ܯ௔௙௧௘௥ using ݀ܿ݅݉ܽ݊ݕ

graph algorithm using STINGER

– Look at change to community: Δܯ௨ ൌ
ெೌ೑೟೐ೝ

ெ೔೙೔೟೔ೌ೗

– Insert vertex ݑ and links using STINGER

Initial Findings
• A different way to use streaming analytics: 

”ݏ݊݋݅ݐܽݐݑ݌݉݋ܿ	ܽݐ݈݁݀	ݔ݁ݐݎ݁ݒ“
• Multiple metrics pinpoint same key vertices.
• Computationally efficient

– Over 20ܺ faster than networks approach.
– Highly scalable

• Applicable to other metrics as well



STINGER Graph & Analytic Update Process

Accumulate recent graph updates in main memory 
and create a batch.
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Pre-process, Sort, 
Reconcile

“Age off” old vertices

Modify STINGER graph

Update metrics (execute streaming analytics)

STINGER
graph

Insertions / 
Deletions

Affected vertices

Change detection



STING: High-level architecture
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◮ Server: Graph storage, kernel orchestration
◮ OpenMP + sufficiently POSIX-ish
◮ Multiple processes for resilience



STINGER: as an analysis package
• Streaming edge insertions and deletions: 

Performs new edge insertions, updates, and deletions in batches or individually.
Optimized to update at rates of over 3 million edges per second on graphs of one billion edges.

• Streaming clustering coefficients:
Tracks the local and global clustering coefficients of a graph.

• Streaming connected components:
Real time tracking of the connected components.

• Streaming Betweenness Centrality:
Find the key points within information flows and structural vulnerabilities.

• Streaming community detection:
Track and update the community structures within the graph as they change.

• Anything that a static graph package  can do (and a whole lot more):
– Parallel agglomerative clustering: 

Find clusters that are optimized for a user-defined edge scoring function. 
– K-core Extraction:

Extract additional communities and filter noisy high-degree vertices.
– Classic breadth-first search:

Performs a parallel breadth-first search of the graph starting at a given source vertex to find shortest paths.
– Parallel connected components:

Finds the connected components in a static network.

David A. Bader 27

http://www.stingergraph.com/



STINGER: Where do you get it?

http://www.stingergraph.com/
• Gateway to

– code,
– development,
– documentation,
– presentations...

• Users / contributors / 
questioners: Georgia Tech, 
PNNL, CMU, Berkeley, Intel, 
Cray, NVIDIA, IBM, Federal 
Government, Ionic Security, 
Citi, Accenture
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STINGER Development

Enterprise

• Tech transfer for GTRI
• Enterprise software 

integrity
– Nightly builds
– Unit testing required

Academic

• Maintained by Georgia 
Tech

• Ideal for prototyping.
• Sandbox for developing 

new concepts
• When software matures…

David A. Bader 29
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Graph Analytics (Dynamic vs. Streaming)

• Many libraries support updates to graph
– They do not have dynamic graph analytics

Streaming 
RateSlow (very low) Fast

Graph and algorithm 
properties

Dynamic

Static

STINGER

GraphLab

GiraphGraphX
Galois

TitanDB
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Boost

Gunrock

Scalability (Volume vs. Performance)

• Many libraries support updates to graph
– They do not have dynamic graph analytics

Performance
ScalabilityLow Fast

Data 
Scalability
Large

Small

STINGERGraphLab

Giraph
GraphX

GaloisTitanDB

GraphCHI
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Framework Platform Dynamic Data
Structure/Insertio
ns/Deletions

Dynamic
Algorithms

Semantic 
Support

Utilization Data 
scalability

Absolute 
Performance

STINGER Shared   
Galois Shared --- ---
Ligra Shared --- ---
Boost Shared/

Distributed --- ---
Gunrock Shared/

Distributed --- ---
Giraph Distributed

GraphX Distributed --- ---
GraphLab Distributed --- ---
Llama Shared   

Graph Library Comparison
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PageRank - Performance Analysis
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• Lower is better.
• 2 orders of magnitude difference in performance.
• Still outperforms other static-only graph packages.
• Outperforms the distributed systems even for large networks 

with plenty of computational demand!
• Some platforms did not complete in reasonable amount of time.

R-MAT Graph
• Vertices: 16M
• Edges: 128M



Other algorithms
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R-MAT Graph
• Vertices: 1M
• Edges: 8M

• STINGER is orders of magnitude faster.
• Still outperforms other static-only graph packages.

Static Single-Source Shortest Path Static Connected Components



STINGER Summary

• Massive-Scale Streaming Analytics require
– Simple programming model

• Simple API.
• CSR-like in concept.
• STINGER has a lot more under the hood.

– Extremely fast updates
• Millions of updates per second.
• These must not be bottlenecks for updating an analytic.
• STINGER offers these

• STINGER has major performance benefits
– Thousands of times faster than static graph computation.
– Hundreds of thousands of updates per second for numerous 

analytics.
– Real-time monitoring of underlying network.
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Conclusions

• Massive-Scale Streaming Analytics will 
require new 
– High-performance computing platforms
– Streaming algorithms
– Energy-efficient implementations
and are promising to solve real-world challenges!

• Mapping applications to high performance 
architectures may yield 6 or more orders of 
magnitude performance improvement
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