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• There are several limits to current medical data science research:
– Due to privacy concerns, it is difficult for researchers to gain access to patient data
– When data is distributed to researchers, it needs to be explicitly anonymized and 

handled according to certain procedures to ensure HIPAA compliance
– If researchers provide medical facilities with data analysis programs to run locally, 

they have no way of verifying the results

Current Problem: Privacy-Preserving Medical ML
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• How can we perform distributed medical machine learning in a 
privacy-preserving and verifiable way?
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Application: Verifiable Edge Training for COVID-19

Public COVID datasets are hit or miss:
• Very limited, possibly due to health 

privacy concerns and infrastructure
• Inputs are not standardized
• There is a tradeoff between patient 

privacy and model accuracy

Edge training provides an agile approach 
for fast data science (particularly useful in 
crisis situations) by providing access to 
data without going through normal slow 
approval channels
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Solution: Zero-Knowledge Proofs and Verifiable Computation

Zero-knowledge proofs (ZKPs) allow us to prove that a claim IS true 
without revealing WHY it is true, even if the prover is untrusted and 
malicious.

zk-SNARKs are special ZKPs that are tiny and non-interactive

● zk-SNARKs can be used to remotely verify 
the execution of programs

● zk-SNARKs are constant size and verify in 
milliseconds

● zk-SNARKs reveal NO information about the 
claim they are proving (except that it is true)

Zero-
Knowledge
Succinct
Non-Interactive
Argument of
Knowledge
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Proofs and Zero-Knowledge Proofs (π)

• A traditional proof for “Where’s Waldo?”
– Point to Waldo to demonstrate you know where he is

– This proves that you know where he is by showing someone else 
where he is
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• A zero-knowledge proof (π) for “Where’s Waldo?”
– Cut out a Waldo shaped hole in a much larger piece of paper
– Place the hole over the location of Waldo

– This proves that you know where Waldo is without giving any 
information to anyone else about where he is 

Proofs and Zero-Knowledge Proofs (π)

Slide under paper
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zk-SNARK Construction for Program Verification
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int myFunction(int a) {
int b=a*a-4;
return 3*b+a;

}
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Zero Knowledge Added!

Succinctness Added!

Interactivity
Removed!

zkSNARKs can be used to 
remotely verify program 

execution!
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Distributed Learning with Subgradients
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Distributed Learning Approaches Combined into One:
● Scaling Distributed Machine Learning with the Parameter Server (2014)
● Stochastic Gradient Push for Distributed Deep Learning (2018)
● Network Topology and Communication-Computation Tradeoffs in Decentralized 

Optimization (2018)
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Distributed Learning with Subgradients
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Patient data is not private
Tampering can occur anywhere unnoticed
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Verifiable, Distributed Learning with zkSNARKs
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Verifiable, Distributed Learning with zkSNARKs
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Distributed Learning Individual Interaction

Trained Parameters,
Commitment, Proof

010101
000101
110101
100011

010101
000101
110101
100011

010101
000101
110101
100011π

ML Model 
Aggregator

Hospital Edge 
Training Node

Zero-Knowledge 
Data Commitment

010101
000101
110101
100011

010101
000101
110101
100011

010101
000101
110101
100011π

Current Weights, Proof

0x9F86
D08188
4C7D65
9A2FEA

?



NOTE:
This is 

the Lab 
color 

palette.
Multi-Mode Distributed Learning Prover
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Framework Implementation

• Necessary gadgets written in C++ and are used in zkSNARK 
construction using the libsnark compiler toolchain

• Over a dozen reusable, modular gadgets were written and 
optimized by hand.

• Multiple proofs were combined and telescoped using 
recursive proof composition
Gadget Examples:

– Fixed Point Maximum and Vector Maximum
– Fast Dot Product
– Fully Connected Layer Execution/Gradient 

Calculation/Backpropagation
– RELU Execution/Gradient Calculation
– MAXPooling Execution/Gradient Calculation
– Full Neural Network Training
– Differential Privacy Masking

In Progress: Gadgets for Convolutions

Figure. Relations enforcing properties 
that must be true are written in C++ and 

fed into libsnark  
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Benchmarking: Single Node Training Time and Memory 

Tests were performed on a variety of fully connected neural network topologies

When the number of parameters is low and the input is large, the primary cost is the input hashing
When the number of parameters is high, the cost of compliance predicate checks dominates and scales linearly

We used default curves (MNT4/MNT6) that gave us ~80bits of security. Non-published curves with 
similar performance exist for 128 bits of security. DARPA SIEVE program should yield a backend with 
100-1000x performance increase and post-quantum security.

zk-SNARK Size: 2988 bits Predicate Size: 420 bits Verifier Time:  < 0.1 seconds
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Benchmarking: Training Speed Estimates

*We performed tests on a 4 layer neural network with an input size of 1024 and an output size of 10. 
**These statistics assume the dataset is divided into batches of 8-10 inputs per edge node

As the number of edge nodes increases, there is a linear increase in the number of inputs per minute that 
this model can handle with exponentially decreasing additional time overhead per communication round
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Other Potential Application Areas

• Privacy-Preserving AI/ML
– Distributed data collection with dynamic 

network topologies
– Verifiable and compliant decision making

• Nuclear Security Science
– Remote facility modelling, assessment, and 

auditing without exposing protected 
information

• IoT Data Synthesis
– Collaborative remote data science
– Fully private and tamper proof data 

collection and analysis



NOTE:
This is 

the Lab 
color 

palette.

• Conclusion
– It is possible to use zero knowledge proofs to do data science research 

on datasets which were not previously accessible due to privacy 
concerns or lack of trust

– Tamper-proof, verifiable, distributed medical machine learning is 
currently a possibility and will soon be highly practical

– It is possible do train a machine learning model so anyone can quickly 
verify that resulting model was trained correctly on a specific dataset

• Future Plans
– We plan to release the code that we have developed publically for 

researchers to learn from
– We plan to generalize this setup to a larger range of ML architectures

Conclusion And Future Work


