Distributed Memory on POWER 10

H. Peter Hofstee, IBM

hofstee@us.ibm.com

Agenda

- Bandwidth Trends
- OpenCAPI on POWER 10
- OpenCAPI Memory Disaggregation
 - POWER9 "Thymesisflow"
 - POWER10 "Memory Inception"

Adapted/Updated from Sandisk Blog

System Composability:

POWER 10

W. Starke & B. Thompto, Hot Chips 32, 2020

The OMI Advantage

Memory Bandwidth AND Depth at LOW Cost

4x DDR4 3200 DIMM Channels = 102GB/s

AMD - EPYC Rome IO Die 8.34B Transistor on TSMC 7nm - 416mm² ~15.07mm x 27.61mm

7.2GB/s / mm of Die Edge Up to 36GBytes/mm of Die Edge 8x OMI DDIMM Channels = 400GB/s Or 200GB/s Read + 200GB/s Write

POWER10 18B Transisters on Samsung 7nm - 602 mm² ~24.26mm x ~24.82mm

31.5GB/s / mm of Die Edge Up to 81GBytes/mm of Die Edge*

* Higher with different Media - e.g. 1.9TBytes/mm with BittWare 250-HMS

 $5x HBM2s = 1,555GB/s^{1}$ Н н ... 1x HBM2 = 311GB/s Or 155GB/s Read + 155GB/s Write В M M Source: NVidia 1x HBM2 Phy ~11.5mm M **NVIDIA** Н Н Ampere 54.2B Transisters on В В TSMC 7nm N7 - 826 mm² M M ~24.26mm x ~24.82mm 2

> 27.0GB/s / mm of Die Edge Up to 0.7GBytes/mm of Die Edge

To Scale = 20pts: 1mm

Great Concept.....The Reality?

In Production Today with OpenCAPI

Buffer Chip
with <10ns latency adder
over a standard RDIMM

85 mm

1U DDIMM Format

Microchip OMI to DDR4

DDR4 OpenCAPI Memory Interface OMI DDIMM

72b DDR4 3200

Introduced in mid 2019

Maxeler Lightning Talk on FPGA Application acceleration of Memory Bound Problems with OMI BoF Panel at 1:20pm CDT Track 2A

OpenCAPI Acceleration Framework - OC-Accel - Presentation at 10:35am CDT Track 2A

All RTL & Software is proven & fully Open Sourced

POWER9: Thymesisflow Hardware prototype outline Software-Defined control plane bridges OpenCAPI C1 and M1 modes Tightly couples network facing transceivers with PowerBUS OpenCAPI transactions get directly on the network and are issued remotely **BlueLink** 8x 25Gbps Serial links **Out-of-band Control Plane Generated Configuration OpenCAPI** OpenCAPI 100Gbit/sec 100Gbit/sec M1 (LPC) M1 (LPC) serDES Power9 serDES Power9 Coherence **ThymesisFlow ThymesisFlow** Coherence Logic Domain Logic Domain **OpenCAPI OpenCAPI** 100Gbit/sec 100Gbit/sec C1 (accel C1 (accel serDES serDES mode) mode) Circuit Network Alpha Data 9V3

Christian Pinto, 2020 OpenPOWER Summit NA (and Micro 53, Oct 2020)

Alpha Data 9V3

https://github.com/OpenCAPI/ThymesisFlow

Use case: Share load/store memory amongst directly connected neighbors within Pod Unlike other schemes, memory can be used:

- As low latency local memory
- As NUMA latency remote memory

Example: Pod = 8 systems each with 8TB

Workload A Rqmt: 4 TB low latency

Workload B Rqmt: 24 TB relaxed latency Workload C Rqmt: 8 TB low latency plus

16TB relaxed latency

All Rqmts met by configuration shown

POWER10 2 Petabyte memory size enables much larger configurations

(Memory cluster configurations show processor capability only, and do not imply system product offerings)

IBM POWER10

Memory Clustering: Enterprise-Scale Memory Sharing

Pod of Large Enterprise Systems
Distributed Sharing at Petabyte Scale

Or Hub-and-spoke with memory server and memory-less compute nodes

(Memory cluster configurations show processor capability only, and do not imply system product offerings)

IBM POWER10

W. Starke & B. Thompto, Hot Chips 32, 2020

Memory Clustering: Pod-level Clustering

Use case: Low latency, high bandwidth messaging scaling to 1000's of nodes

Leverage 2 Petabyte addressability to create memory window into each destination for messaging mailboxes

(Memory cluster configurations show processor capability only, and do not imply system product offerings)

IBM POWER10

W. Starke & B. Thompto, Hot Chips 32, 2020

References

- William Starke & Brian Thompto, "IBM's POWER10 processor", Hot Chips 32, Aug 16-18 2020
- https://events.linuxfoundation.org/openpower-summit-north-america/program/schedule/
 - Allan Cantle, "OpenCAPI, A Memory-Centric Fabric for a Data-Centric World", Keynote 2020 OpenPOWER Summit NA, Sep 15, 2020
 - Christian Pinto, "Thymesisflow, A Hardware/Software Open Framework for Software-Defined Memory Disaggregation based on OpenCAPI", 2020 OpenPOWER Summit NA, Sep 15, 2020