A Study of COVID-19 Impact on Mental Health via Information Extraction and Querying of Clinical Notes

COVID CLSAC: ANALYTICS FOR PANDEMIC DECISION SUPPORT

Marie Humbert-Droz, PhD
Center for Biomedical Informatics Research, Stanford
University

mhdroz@stanford.edu

Introduction

· 1/20/2020

• First COVID-19 case identified in the U.S.

· 1/31/2020

• Declaration of public health emergency (U.S.)

• First confirmed COVID-19 patient in Santa Clara County

• Declaration of national emergency

USA 6,825,697 TOTAL CASES 973.00 New Cuse CSC | Updated Stape State | USA 199,462 TOTAL DEATHS CSC | State Beaths CSC | State

Trends in Number of COVID-19 Cases in the US Reported to CDC, by State/Territory

*covid.cdc.gov, 7/22/20

3/6/2020

• Stanford Hospital announces it is caring for COVID-19 patients

• 3/9/2020

COVID-19 Case Rates by City

Santa Clara County Public Health Dashboard

Legend

COVID Cases By Cities

Rate

1378 - 544 cases per 100,000 people

378 - 544 cases per 100,000 people

271 - 377 cases per 100,000 people

270 or fewer cases per 100,000 people

270 or fewer cases per 100,000 people

County Boundary

Covid Cases By Cities

Rate

COVID Cases By Cities

Rate

COVID Cases By Cities

Rate

20 cases per 100,000 people

270 or fewer cases per 100,000 people

270 or fewer cases per 100,000 people

County Boundary

E Secontry announces first death from COVID-19

- COVID-19 widespread but regions touched differently
- Shelter-in-place order in Santa Clara county was the first in

lace order emitted for 🕍 🛍 Clara County

- Relatively less admissions at Stanford for COVID-19 compared to UC hospitals
- Syndrome surveillance is primordial for pandemic management
- Address a gap for psychiatric disorders

Stanford University

Introduction – this study

Dataset description	Sept. 1 2019 - June 6 2020	
Total number of patients	581,818	
Age (years)		
Mean	41	
STD	25	
Female	323,464 (55.60%)	
Male	257,998 (44.34%)	
Unknown	356 (0.06%)	
Total number of notes	6,550,495	
Total number of terms extracted	203,257,129	
Total number of encounters	0 421 624	
Total number of encounters	8,431,624	
Total number of DX codes	14,783,096	

- Extraction of all clinical terms from clinical notes
- Differential analysis of psychiatric disorders mentions
- Comparison with an average over the three years prior
- Analysis of 4 broad age groups

Age group	Age range (years)	Number of patients
1	< 18	78,486
2	18 - 40	76,535
3	40 - 65	108,097
4	> 65	85,318

Introduction – pipeline and terminology

* Polarity - Temporality - Experiencer

~ 970,000 terms:

- 27 System Organ classes
- 337 High Level Group Terms
- 1,737 High Level Term
- 23,954 Preferred Term
- 71,603 Lowest Level Term

Stanford University

Results – Term counts per unique patient

* 30 days jitter due to deidentification of the data

Stanford University

Results – Term counts per unique patients: differential with baseline

March 17 2020: Shelter-in-place order in the San Francisco Bay Area starts

Results – Term counts per unique patients: differential with baseline

March 17 2020: Shelter-in-place order in the San Francisco Bay Area starts

Analysis of psychiatric disorders mentions

- Considering all patients and all notes from Sept 1 2019 to June 6 2020 shows:
 - Sharp increase in psychiatric disorders related terms mentions per patient almost directly after shelter-in-place order is emitted
 - Majority of the signal comes from anxiety symptoms
- What about diagnosis codes?

Top mental health DX code vs NLP extractions from

Considering diagnosis codes:

- 4 out of 7 codes relate to depression, 2 to anxiety and 1 to panic
- 4 out of 7 mentions belong to Anxiety disorders and symptoms group, 2 to Depressed mood disorders and disturbances
- The proportion of codes is about an order of magnitude lower than the proportion of mentions in the text
- Wider range of concepts is captured in the text:
 - Feeling down, worry, fear

Monthly trend of top 7 extracted concepts by age group

Anxiety mentions increase for all age groups after the shelter-in-place order. Fear is felt mostly by the youngest group and worry by the eldest group

Work in progress

- Patient database build for queries
 - Combine information from both structured and unstructured EHR
 - Patient clinical event data
 - Formulate and answer more complex questions

Conclusions and outlook

- Ontology-based extraction and weakly supervised labeling allows for rapid extraction of all clinical terms from a large hospital EHR database
- Highlight significant trends following shelter-in-place orders:
 - Substantial increase in psychiatric disorders mention
 - Mostly anxiety
 - All considered age groups
- Information extraction from text is primordial to capture such a trend
- Going further:
 - Validation of extraction tool
 - Use of neural language model to improve NER and assertion status
 - Query with embeddings for higher resolution information

Acknowledgements

BMIR
Stanford Center for
Biomedical Informatics Research

- Stanford team:
 - Dr. Suzanne Tamang
 - Dr. Pritam Mukherjee
 - Pr. Olivier Gevaert
- PNNL team:
 - Dr. Sutanay Choudhury
 - Colby Ham
 - Kushbu Agarwal

M E D I C I N E Department of Biomedical Data Science

