/ 121.5
7.2

Pacific

Northwest

NATIONAL LABORATORY 4\ - . 7.8

17.9
1.4

S.2

A Scalable, Thread-safe BN

Programming | AN
Environment for
Streamlng Edge Analytics

6.184

Vito Giovanni Castellana

ENERGY BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy

o

Pacific A Sea of Data

Northwest

NATIONAL LABORATORY

7

racific . A Lot of Little Islands

o

II:I%(r:mSVest A Blg ISIand

NATIONAL LAB

7

racific . A LOT of Messages In Bottles

o

Northwest £\ Sea of Complexity and Heterogeneity

* Endpoints can scale in numbers from tens to millions (and beyond)

« Each system has different endpoints characteristics

= They can perform local computation
v Image recognition, classification, etc
v Data preprocessing, filtering

= They may have limited memory and compute
v Data is collected and sent to the big island

« Computing at the edge is cool and increasingly ubiquitous, but...

o

Northwest V€ Still Need the Big Island (or an Archipelago)

« Several analytics applications work on data gathered from multiple or all
endpoints

« Compute can be offloaded to a server and/or distributed across endpoints
* The server can be distributed itself

« Server features
= Capacity — high data volumes
= Scalability — system size (e.g. number of endpoints)
» Performance — latency and throughput, at scale

o

racific . Flexibility: The Hidden Feature

AAAAAAAAAAAAAAAAAA

 Distributed Analytics Systems are complex

* Programming and using them is as complex

We need flexible software ecosystems to facilitate both the
development and use of analytics systems

* ... while satisfying the performance/scalability constraints

o

racific . Flexibility: Not Much Hidden After All

NATIONAL LABORATORY

» Custom Software solutions
B Often tailored for specific hardware
B Good performance, but...

@ Applications AND data (including models and abstractions)
change/evolve

®Most or the full software infrastructure may need to be re-written

» Custom Hardware/software solutions
B Custom applications on custom hardware
®Best performance, but...
Bl Very high development effort, very high costs, very low portability

» Flexibility also connects to productivity, and cascades to
costs/maintainability

Performance, Portability, and Productivity

Performance

Scale of the data

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

Our Solution

SCALABLE
HIGH-PERFORMANCE
ALGORITHMS &
DATA-STRUCTURES

o

Pacific . What Is SHAD?

NATIONAL LABORATORY

« Afish And a portable one too!

« The C++ library of Scalable Algorithms and Data-Structures
» General Purpose Building Blocks (something like oneTBB, but on steroids)
= High-Level, “custom™ methods and utilities
v New features are and will be added based on user requirements

« A playground for research in
= Parallel Programming Models
* Runtime systems and their application
= New programming abstractions
v focus on distributed, possibly heterogeneous systems
v Goal: influence the community and possibly the standards

o

Pacific

Northwest Features and Design Goals

» Flexibility
Bl Rich set of general purpose data-structures
@ Can be used to implement a variety of applications in different domains
B Data structures support efficiently both
®Read only operations
®Ingest & process applications
@ Frequent updates
¢ Streaming

» Scalability and performance
B Data structures can store, update and process TB scale data
M Distributed on several nodes of a cluster, parallel access and update

o

Pacific

Northwest Features and Design Goals

» Productivity
B User-friendly STL-inspired interfaces -> improved user productivity
@ Easier porting of existing application
B Most low level detalls (architecture, system configuration) are hidden

» Portability
B Abstraction of underlying hardware and runtime system
@ Facilitates supporting multiple platforms/environments
B Limited set of software dependencies
®E.g. compiler support for C++ 17

Pacific

Northwest High-level Design Overview

».:] IH' e S
._ﬁ’i#
Applications

Extensions

STL Algorithms

STL Containers + lterators

Abstract Data Structure

Abstract Runtime Interface

GMT TBB C++ other

o

Pacific

Northwest ~ Apstract Runtime Interface: Main Concepts

Machine Abstraction
» Locality
Bl Entity in which memory is directly accessible
B Examples: node in a cluster, core, NUMA domain
B Same abstraction can be extended to edge devices
» Task
B Basic unit of computation
B Can be executed on any locality
B Can be asynchronous
» “Handles”

M Identifiers for spawning activities
@ Multiple tasks may be associated to the same handle

B Used to check for task completion

o

Pacific

Northwest RuUNtimMe Interface API (extract)

» [async]ExecuteAt
Bl [asynchronously] execute a function on a given locality
» [async]ExecuteAtWithRet
Bl [asynchronously] execute a function on a given locality and returns data back
» [async]ExecuteOnAll
Bl [asynchronously] execute a function on all localities
» [async]ForEachAt
Bl [asynchronously] execute a parallel loop on a given locality
» [async]ForEachOnAll
Bl [asynchronously] execute a parallel loop on all localities
» [async]dma
B [asynchronously] copy data to/from a [remote] memory location
» walitForCompletion
B wait for the completion of asynchronous tasks

o

Pacific

Northwest RuNtime Interface Mappings

» Plain C++
B For fast prototyping and playing around
» PNNL's Global Memory and Threading (GMT) library
B Targets distributed systems
M Available at https://github.com/pnnl/gmt
» Intel’ Threading Building Blocks (oneTBB)
B Targets shared memory systems
@ ... these may include your laptop ©

» First version of an HPX backend is also available
M https://github.com/STEIIAR-GROUP/hpx

Pacific

Northwest Programming Model

» Shared Memory Programming Model
B Also on distributed setting
B Non-SPMD
» Standard C++ STL and “STL-like” APIs
B Data structure interfaces, iterators, algorithms, execution policies, etc

price_t max_price(shad::array<option_t, n> &a) {
shad::array<price_t, n_options> p;
shad::transform(shad::execution::par, a.begin(), a.end(),

p.begin(), blck schls);

return *shad::max_element(shad::execution::par, p.begin(), p.end());

}

o

Pacific

Northwest (General Purpose Data Structures and Algorithms

» Include: array, vector, unordered set, map and multimap
» They “look like” STL, but they
B Can be distributed on several localities
@®High capacity (TB+ scale data)
BAre thread safe
BCan be modified and accessed in parallel
®High performance

B Automatically manage synchronization and data-
movements

Pacific

Northwest AP stract Data Structure

Locality y

| Locality x

N\

DI

LOCAL DATA

|

LOCAL DATA

|

DATA-STRUCTURE INTERFACE "N | DATA-STRUCTURE INTERFACE
| E -
1 |
| | |7 | |
W
loi
CATALOG BUFFER | E I CATALOG BUFFER

—

AN

EABSTRACT RUNTIME INTERFACEJ / [ABSTRACT RUNTIME INTERFACEJ

RUNTIME SYSTEM RUNTIME SYSTEM

| |
| |
| |
| |
| |
| |
| |
| |
| AGGR. AGGR. |
| |
| |
| |
| |
| |
| |
| |

Pacific

Northwest ~ SHAD Arrays
» STL compliant with iterators
» Distributed evenly across locales
M Data distribution can be changed

» Single and multiple element get and put operations

» Bulk puts/gets with DMA support
» shad: :array<type>

» SHAD also includes two variants of vector
M Legacy implementation
® Round robin dynamic memory allocation, support for push_back
B New implementation
® Analogous to Array, but allows resizing

Pacific

Northwest Unordered Maps and Sets

NATIONAL LABORATORY

» STL COmp“ant with iterators Identical keys in different structures

/ mapped to the same locale

B Local data is stored in an unordered map/set, with the same API

» Keys hashed to locales

B Local map/set is a vector of linked lists (and it is thread safe too!)
B Nodes in the lists are dynamically allocated
. . . / Needed for streaming data
» Multiple readers, single writer per bucket

M Inserts only block access to the updated and following entries in the list

® Previous entries can be accessed

B Updates don’t block any access
» Insert, delete, update, and apply are atomic

» Deletes swap the deleted entry with a valid one
» shad::unordered hmap<ktype, vtype, key compare, insert policy>

| | Way cool
Multiple field keys

Pacific

Northwest Multimaps and Atomics

NATIONAL LABORATORY

Multimaps

» STL compliant with iterators

» Same structure as unordered_map
» Key differences

B Each key may have multiple values, stored in a std::vector
B Writes lock the bucket
» shad::unordered multimap<ktype, vtype, key compare, 1insert policy>

Atomics

» Atomic objects are globally accessible, but the data is stored in one locale
» Supported atomic operations defined on std::atomic, plus

» Customizable operations (via user defined operators)

» shad::atomic<type>

Pacific

Northwest |NSerters

NATIONAL LABORATORY

» Inserters are cool

» Inserters are functors which define how the insert operation behaves
B Default inserters simply update the entry value
B They can be complex classes, with attributes and their own additional methods
B They can even NOT insert!

» Regardless the operation(s) they actually perform, inserters have the same atomic
properties of regular writes

» Maps store a main inserter at creation, of the specialized type (defaulted to Overwriter)

» Insert methods can use any different custom inserter

Pacific

Northwest ~ Reactive Analytics

NATIONAL LABORATORY

» Inserters can be used for a number of different applications

» Examples
B Cascaded inserts and data filtering
® Can be used for access control, multi-level security
B Compute statistics
® E.g. count same-key insertions, aggregate value properties, etc
B Trigger computation
@ Distributed ID dictionary creation
® Alerting systems
® Action Graphs

o

Pacific
Northwest
NATIONAL LABORATORY

SHAD-powered Systems for
Streaming Edge Analytics

o

Pacific

Northwest OPTL1: Data/Computation is fully distributed

o

Pacific

Northwest OPT2: Data/Computation is Offloaded

o

Pacific

Northwest QOQPT3: Client-Server Model

NATIONAL LABORATORY

o

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

Throughput Analysis
of SHAD Data-Structures

o

Pacific

Northwest ~ Experimental Setup

» GMT Mapping
» SHAD/GMT compiled with GCC 8 and OpenMPI
B We are using tcMalloc
» Platform: commodity cluster
M Intel Xeon dual socket processors @2.80GHz
@10 cores per socket
@®Used up to 320 cores
» Machine abstraction: 1 Locality per socket
B Up to 32 localities
» Data elements are of type uint

7
Pacific Arr ay

Northwest

NATIONAL LABORATORY

Linear throughput up to 1T
* Ins/LkUp: ~3B ops/sec
« ForEach: ~80B ops/sec

I Note: arrays support DMA I I
I II =l o I transfers, not used here I [] =1 | —

o

racific . Unordered Map

Northwest

NATIONAL LABORATORY

Peak @ 4B

Insert: ~307M ops/sec
LkUp/Apply: ~75M ops/sec
ForEach: ~25B ops/sec

Pacific
Northwest

NATIONAL LABORATORY

Unordered Set

Peak @ 4B

Insert: ~315M ops/sec
Find/Apply: ~80M ops/sec
ForEach: ~25B ops/sec

o

pacific . Scaling the Number of Endpoints

NATIONAL LABORATORY

60

* Endpoints scaled from 2 to 64 per locality
30 max: 2048 endpoints
« ~Same performance regardless the
- number of endpoints
. - Peak @ 16B
. I * Insert: ~310M ops/sec

, 1l

1B

o

racific . “Cascaded” Insertions

NATIONAL LABORATORY

60
50

40

* Insertions in a map, triggering an insertion in

. a set (unique keys)
Each insertion in the set is done atomically
& wrt to the insertion in the map
. Peak @ 8B, 32 locales
« Cascaded Insert: ~163M ops/sec

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

Encore: Ongoing Research

o

Northwest Extend the Concept of Locality

« Current limitation: data/computation is distributed over homogenous sets of
localities

v Example: CPUs VS GPUs (experimental)
 Black Scholes on CPUs
= ~706.7 millions options/sec @16 locales
= ~82.5x speedup vs plain STL
* Black Scholes on GPUs (NV Tesla)
= ~5 billions options/sec @4 locales
= ~585x speedup vs plain STL (CPUSs)

« GOAL.: Fully exploit heterogeneity, while maintaining high-level, portable interfaces
* FPGAs, GPUs, custom accelerators including Edge Devices

o

nonwest BUIID Complex Analytics Worktlows

« We are using SHAD as the software infrastructure to define and build complex
analytics applications

* Mix of different computational and memory access patterns
v Graph Analytics + Machine Learning

* Workflows have streaming variants

 More iInfo @

https://www.iarpa.gov/research-programs/agile

Pacific
Northwest

AAAAAAAAAAAAAAAAAA Thanksll

https://github.com/pnnl/SHAD

Vito Giovanni Castellana
vitoGiovanni.castellana@pnnl.gov

Pacific
Northwest

NATIONAL LABORATORY

