
A Scalable, Thread-safe
Programming

Environment for
Streaming Edge Analytics

Vito Giovanni Castellana

A Sea of Data

A Lot of Little Islands

A Big Island

A LOT of Messages in Bottles

• Endpoints can scale in numbers from tens to millions (and beyond)

• Each system has different endpoints characteristics
▪ They can perform local computation

✓ Image recognition, classification, etc

✓ Data preprocessing, filtering

▪ They may have limited memory and compute

✓ Data is collected and sent to the big island

• Computing at the edge is cool and increasingly ubiquitous, but…

A Sea of Complexity and Heterogeneity

• Several analytics applications work on data gathered from multiple or all
endpoints

• Compute can be offloaded to a server and/or distributed across endpoints

• The server can be distributed itself

• Server features
▪ Capacity – high data volumes

▪ Scalability – system size (e.g. number of endpoints)

▪ Performance – latency and throughput, at scale

We Still Need the Big Island (or an Archipelago)

• Distributed Analytics Systems are complex

• Programming and using them is as complex

We need flexible software ecosystems to facilitate both the
development and use of analytics systems

• … while satisfying the performance/scalability constraints

Flexibility: The Hidden Feature

Flexibility: Not Much Hidden After All

Custom Software solutions

Often tailored for specific hardware

Good performance, but…

Applications AND data (including models and abstractions)

change/evolve

Most or the full software infrastructure may need to be re-written

Custom Hardware/software solutions

Custom applications on custom hardware

Best performance, but…

Very high development effort, very high costs, very low portability

Flexibility also connects to productivity, and cascades to

costs/maintainability

10

Performance, Portability, and Productivity

Performance

Scale of the data

Our Solution

• A fish And a portable one too!

• The C++ library of Scalable Algorithms and Data-Structures

▪ General Purpose Building Blocks (something like oneTBB, but on steroids)

▪ High-Level, “custom” methods and utilities

✓New features are and will be added based on user requirements

• A playground for research in

▪ Parallel Programming Models

▪ Runtime systems and their application

▪ New programming abstractions

✓ focus on distributed, possibly heterogeneous systems

✓Goal: influence the community and possibly the standards

What is SHAD?

14

Features and Design Goals

Flexibility

Rich set of general purpose data-structures

Can be used to implement a variety of applications in different domains

Data structures support efficiently both

Read only operations

Ingest & process applications

Frequent updates

Streaming

Scalability and performance

Data structures can store, update and process TB scale data

Distributed on several nodes of a cluster, parallel access and update

15

Features and Design Goals

Productivity

User-friendly STL-inspired interfaces -> improved user productivity

Easier porting of existing application

Most low level details (architecture, system configuration) are hidden

Portability

Abstraction of underlying hardware and runtime system

Facilitates supporting multiple platforms/environments

Limited set of software dependencies

E.g. compiler support for C++ 17

16

High-level Design Overview

17

Abstract Runtime Interface: Main Concepts

Machine Abstraction

Locality

Entity in which memory is directly accessible

Examples: node in a cluster, core, NUMA domain

Same abstraction can be extended to edge devices

Task

Basic unit of computation

Can be executed on any locality

Can be asynchronous

“Handles”

Identifiers for spawning activities

Multiple tasks may be associated to the same handle

Used to check for task completion

18

Runtime Interface API (extract)

[async]ExecuteAt

[asynchronously] execute a function on a given locality

[async]ExecuteAtWithRet

[asynchronously] execute a function on a given locality and returns data back

[async]ExecuteOnAll

[asynchronously] execute a function on all localities

[async]ForEachAt

[asynchronously] execute a parallel loop on a given locality

[async]ForEachOnAll

[asynchronously] execute a parallel loop on all localities

[async]dma

[asynchronously] copy data to/from a [remote] memory location

waitForCompletion

wait for the completion of asynchronous tasks

19

Runtime Interface Mappings

Plain C++

For fast prototyping and playing around

PNNL’s Global Memory and Threading (GMT) library

Targets distributed systems

Available at https://github.com/pnnl/gmt

Intel’ Threading Building Blocks (oneTBB)

Targets shared memory systems

… these may include your laptop ☺

First version of an HPX backend is also available

https://github.com/STEllAR-GROUP/hpx

20

Programming Model

Shared Memory Programming Model

Also on distributed setting

Non-SPMD

Standard C++ STL and “STL-like” APIs

Data structure interfaces, iterators, algorithms, execution policies, etc

price_t max_price(shad::array<option_t, n> &a) {

shad::array<price_t, n_options> p;

shad::transform(shad::execution::par, a.begin(), a.end(),

p.begin(), blck_schls);

return *shad::max_element(shad::execution::par, p.begin(), p.end());

} SHAD-powered Distributed STL

21

General Purpose Data Structures and Algorithms

Include: array, vector, unordered set, map and multimap

They “look like” STL, but they

Can be distributed on several localities

High capacity (TB+ scale data)

Are thread safe

Can be modified and accessed in parallel

High performance

Automatically manage synchronization and data-

movements

22

Abstract Data Structure

23

SHAD Arrays

STL compliant with iterators

Distributed evenly across locales

Data distribution can be changed

Single and multiple element get and put operations

Bulk puts/gets with DMA support

shad::array<type>

SHAD also includes two variants of vector

Legacy implementation

Round robin dynamic memory allocation, support for push_back

New implementation

Analogous to Array, but allows resizing

24

Unordered Maps and Sets

STL compliant with iterators

Keys hashed to locales

Local data is stored in an unordered map/set, with the same API

Local map/set is a vector of linked lists (and it is thread safe too!)

Nodes in the lists are dynamically allocated

Multiple readers, single writer per bucket

Inserts only block access to the updated and following entries in the list

Previous entries can be accessed

Updates don’t block any access

Insert, delete, update, and apply are atomic

Deletes swap the deleted entry with a valid one

shad::unordered_hmap<ktype, vtype, key_compare, insert_policy>

Way cool

Multiple field keys

Identical keys in different structures

mapped to the same locale

Needed for streaming data

25

Multimaps and Atomics

Multimaps

STL compliant with iterators

Same structure as unordered_map

Key differences

Each key may have multiple values, stored in a std::vector

Writes lock the bucket

shad::unordered_multimap<ktype, vtype, key_compare, insert_policy>

Atomics

Atomic objects are globally accessible, but the data is stored in one locale

Supported atomic operations defined on std::atomic, plus

Customizable operations (via user defined operators)

shad::atomic<type>

26

Inserters

Inserters are cool

Inserters are functors which define how the insert operation behaves

Default inserters simply update the entry value

They can be complex classes, with attributes and their own additional methods

They can even NOT insert!

Regardless the operation(s) they actually perform, inserters have the same atomic

properties of regular writes

Maps store a main inserter at creation, of the specialized type (defaulted to Overwriter)

Insert methods can use any different custom inserter

27

Reactive Analytics

Inserters can be used for a number of different applications

Examples

Cascaded inserts and data filtering

Can be used for access control, multi-level security

Compute statistics

E.g. count same-key insertions, aggregate value properties, etc

Trigger computation

Distributed ID dictionary creation

Alerting systems

Action Graphs

SHAD-powered Systems for
Streaming Edge Analytics

OPT1: Data/Computation is fully distributed

OPT2: Data/Computation is Offloaded

OPT3: Client-Server Model

Throughput Analysis

of SHAD Data-Structures

33

Experimental Setup

GMT Mapping

SHAD/GMT compiled with GCC 8 and OpenMPI

We are using tcMalloc

Platform: commodity cluster

Intel Xeon dual socket processors @2.80GHz

10 cores per socket

Used up to 320 cores

Machine abstraction: 1 Locality per socket

Up to 32 localities

Data elements are of type uint

Array

0

1

2

3

4

5

6

7

8

9

4 8 16 32

Insert (Best Case)

1B 2B 4B

0

5

10

15

20

25

30

35

4 8 16 32

Insert (Worst Case)

1B 2B 4B

0

2

4

6

8

10

12

14

16

4 8 16 32

Lookup (Best Case)

1B 2B 4B

0

50

100

150

200

250

300

350

400

4 8 16 32

Lookup (Worst Case)

1B 2B 4B

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

4 8 16 32

For Each

1B 2B 4B

Linear throughput up to 1T

• Ins/LkUp: ~3B ops/sec

• ForEach: ~80B ops/sec

Note: arrays support DMA

transfers, not used here

Unordered Map

0

50

100

150

200

250

4 8 16 32

Insert (Unique Keys)

1B 2B 4B

0

50

100

150

200

250

4 8 16 32

Insert (Duplicate Keys)

1B 2B 4B

0

100

200

300

400

500

600

700

800

900

4 8 16 32

Lookup

1B 2B 4B

0

100

200

300

400

500

600

700

800

900

4 8 16 32

Apply

1B 2B 4B

0

0.5

1

1.5

2

2.5

4 8 16 32

For Each

1B 2B 4B

Peak @ 4B

• Insert: ~307M ops/sec

• LkUp/Apply: ~75M ops/sec

• ForEach: ~25B ops/sec

Unordered Set

Peak @ 4B

• Insert: ~315M ops/sec

• Find/Apply: ~80M ops/sec

• ForEach: ~25B ops/sec

0

50

100

150

200

250

4 8 16 32

Insert (Unique Keys)

1B 2B 4B

0

50

100

150

200

250

4 8 16 32

Insert (Duplicate Keys)

1B 2B 4B

0

100

200

300

400

500

600

700

800

900

4 8 16 32

Find/Apply

1B 2B 4B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 8 16 32

For Each

1B 2B 4B

Scaling the Number of Endpoints

• Endpoints scaled from 2 to 64 per locality

• max: 2048 endpoints

• ~Same performance regardless the

number of endpoints

• Peak @ 16B

• Insert: ~310M ops/sec

0

10

20

30

40

50

60

1B 2B 4B 8B 16B

“Cascaded” Insertions

• Insertions in a map, triggering an insertion in

a set (unique keys)

• Each insertion in the set is done atomically

wrt to the insertion in the map

• Peak @ 8B, 32 locales

• Cascaded Insert: ~163M ops/sec
0

10

20

30

40

50

60

1B 2B 4B 8B

Encore: Ongoing Research

• Current limitation: data/computation is distributed over homogenous sets of
localities

✓Example: CPUs VS GPUs (experimental)

• Black Scholes on CPUs

▪ ~706.7 millions options/sec @16 locales

▪ ~82.5x speedup vs plain STL

• Black Scholes on GPUs (NV Tesla)

▪ ~5 billions options/sec @4 locales

▪ ~585x speedup vs plain STL (CPUs)

• GOAL: Fully exploit heterogeneity, while maintaining high-level, portable interfaces

▪ FPGAs, GPUs, custom accelerators including Edge Devices

Extend the Concept of Locality

• We are using SHAD as the software infrastructure to define and build complex
analytics applications

• Mix of different computational and memory access patterns
✓ Graph Analytics + Machine Learning

• Workflows have streaming variants

• More info @

https://www.iarpa.gov/research-programs/agile

Build Complex Analytics Workflows

42

Thanks!!

Vito Giovanni Castellana

vitoGiovanni.castellana@pnnl.gov

https://github.com/pnnl/SHAD

43

