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The view from my office



The west half of our 
property was a horse 
pasture … which means a 
grassy biological desert.

We are in year three of a 
long process to return the 
land to its native state.

The patch of dirt in the 
picture, if you look closely, 
has  over 800 plants that we 
just put in the ground.    

With luck, this spring we 
will have amazing habitat 
for birds … native plants 
with lots of flowers for 
tasty bugs.

This project is led by my wife 
Pat Welle.  She is an amazing 
photographer.  

See her work at:
https://www.patwelle.com/
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Before we get started … I just received copies of my new book

This is the greatest book ever written 
about GPU programming with OpenMP.    

Using what you learn from this 
book, you will never again need to 
use CUDA or any other proprietary 
API for GPU programming.

This book will take you from 
GPU novice to expert … with 
beautiful writing guiding you 
every step of the way!

Reviewers are raving about this book! *

*Tim Mattson for the 2023 Ocean Park Book Review 

Future trends in HPC are moving us 
towards CPUs tightly integrated with 
GPUs … often in the same socket.   
OpenMP is the only way to program 
both classes of devices with a single API.

All the cool people will own this book.  
Order yours today from MIT Press or Amazon 
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In the beginning, there 
were few languages … 

Fortran

C

C++

The fiery pit of doom

Pascal

ALGOL Ada
COBOL



… but then God intervened*

Genesis 11:1-9 (Programmer’s Standard Edition)

All developers used the same language. They gathered together 
in the valley of Silicon to build great programs and  make a name 
for themselves, so funding would flow in great measure unto them.

God came down to look upon them and the programs they wrote 
and remarked that with one language, nothing that they sought 
would be out of their reach. 

Hence, God confounded them and gave them languages each 
unto their own domain so they could not understand each other.

And the developers scattered and stopped building such great 
programs.

*…with thanks to Andrew Lumsdaine who shared this observation with me 

http://www.chucksperry.net/tower-of-babel-art-print-noam-chomsky-book-cover/

The Tower of Babel



And it came to pass that developers created many 
parallel programming environments …

ABCPL
ACE 
ACT++ 
Active messages
Ada 
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba 
ARTS
Athapascan-0b
Aurora
Automap
bb_threads 
Blaze
BSP
BlockComm 
C* 
C* in C 
C** 
CarlOS

Cashmere
C4
CC++ 
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran 
Converse
Code
COOL 
CORRELATE
CparPar
CPS 
CRL
CSP
Cthreads 
CUMULVS
DAGGER
DAPPLE 
Data Parallel C 
DC++ 
DCE++ 
DDD

DICE
DIPC 
DOLIB
DOME 
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel 
Eilean 
Emerald 
EPL 
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE 
Fork
Fortran-M
FX
GA 
GAMMA 
Glenda 

ISETL-Linda 
ParLin 
Eilean 
P4-Linda
Glenda 
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie 
Manifold Mentat
Legion
Meta Chaos 
Midway
Millipede
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin

Parafrase2 
Paralation 
Parallel-C++ 
Parallaxis
ParC 
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP 
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus 
POET.
Polaris 
POOMA
POOL-T
PRESTO

P-RIO 
Prospero
Proteus 
QPC++ 
PVM
PSI
PSDM
Quake
Quark
Quick 
Threads
Sage++
SCANDAL
 SAM pC++ 
SCHEDULE
SciTL 
POET 
SDDA
SHMEM 
SIMPLE
Sina 
SISAL.
distributed 
smalltalk 
SMI.
SONiC

Parallel programming environments in the 90’s

GLU
GUARD
HAsL.
Haskell 
HPC++
HPF
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE 
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma 
KOAN/Fortran-S
LAM
Lilac 
Linda
JADA 
WWWinda

Nano-Threads
NESL
NetClasses++ 
Nexus
Nimrod
NOW
Nx
Objective 
Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
P4
P4-Linda
Pablo
PADE
PADRE 
Panda 
Papers 
AFAPI.
Para++
Paradigm 

Split-C.
SR
Sthreads 
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal 
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++ 
UNITY 
UC 
V 
ViC* 
Visifold V-NUS 
VPE
Win32 threads 
WinPar 
WWWinda 
 XENOOPS  
XPC
Zounds
ZPL

This list was compiled by looking at papers listed in conference proceedings form the mid to the late 90’s.
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Zounds
ZPL

This list was compiled by looking at papers listed in conference proceedings form the mid to the late 90’s.

Two Major Problems emerged from this 
abundance of parallel programming 

environments
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Problem one: Engineering is a zero sum game. 

• Chasing the “next cool thing” wastes valuable (and limited) resources.

• From the vendor’s perspective … we were burned by overzealous computer scientists leading our 
customers (and us) down dark rabbit holes … my favorite example of this is HPF.
– HPF started in the early 90s to create a common Fortran dialect for Parallel Programming based all the “best 

ideas” out there.   

– Unfortunately, the real goal was to codify existing approaches using array-based data parallel programming.

– HPF 1.0 (released in 1993) was great for a set of “toy programs” and academic benchmarks.

– It was disastrous for real applications … my group at Intel in the mid-90s (when we finally had reasonable 
HPF compilers) could not find a single HPC application group to use HPF.    It was a total failure!
– Real applications, even if largely data parallel, include code that is fundamentally task parallel.  HPF did not to tasks.
– The array style notation added a lot of overhead … that style of programming requires aggressive fusion across 

operations … something we could not do at that time (and still can’t do very well today some 30 years later).  

It’s heart-breaking to think of all the important work that did NOT get done as we chased 
(usually with customer’s pushing us) a host of different programming models.

A small number of programming models means vendors can focus and give users portable, 
parallel, programming models that actually work with supporting tool-chains
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Problem Two: Too many options, chase programmers away.
It’s baked into human nature.

• The Draeger Grocery Store experiment, 
consumer choice:
– Two Jam-displays with coupon’s for purchase 

discount.
– 24 different Jam’s
– 6 different Jam’s

– How many stopped by to try samples at the 
display?

The findings from this study show that an extensive array of options can at first seem highly appealing to consumers, yet can reduce 
their subsequent motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing?     Journal of Personality and Social Psychology, 76, 995-1006. 
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Problem 2: Too many options, chase programmers away.
It’s baked into human nature.

• The Draeger Grocery Store experiment, 
consumer choice:
– Two Jam-displays with coupon’s for purchase 

discount.
– 24 different Jam’s
– 6 different Jam’s

– How many stopped by to try samples at the 
display?

– Of those who “tried”, how many bought jam?
3

bu
y

30

bu
y

The findings from this study show that an extensive array of options can at first seem highly appealing to consumers, yet can reduce 
their subsequent motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing?     Journal of Personality and Social Psychology, 76, 995-1006. 

Choice Overload: given too many options, 
people choose NOT to choose.



We need a path to the promised land, where we have a 
small number of programming languages that cover all 

our programming needs.   

Solution?      Intelligent Design

14



Intelligent design at work:  Relational Database Systems

* An “algebra”  is a set of objects, operators that act on those objects, and rules for how those operators interact

• Researchers at IBM  launched the modern era of database technology with:
•  Relational algebra* (Codd, 1970)
•  Structured query language à SQL. (Boyce and Chamberlin, 1974)

Edgar Codd (1923-2003)

Query written 
in SQL

Query compiled into a 
“logical query plan”

Optimizer generates optimized 
“physical query plan”

Enabled by a formal, Relational Algebra

• By the mid-80’s, the relational model  dominated the world of DBMS. 
• Database researchers at IBM and UC Berkeley exploited the declarative nature 

of SQL to build systems that were Performant, Portable, and Productive



If Intelligent Design worked for the database 
world, could I apply it to “my” world … to build 

a full-stack solution that handled everything 
from HPC to data management?

Yes … Linear Algebra to the rescue!!! 

16
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The quest for a foundational algebra of programming

• Hypothesis: Linear Algebra can serve as a foundation for programming across 
scientific and data-analytics.

• We know much of what we do in scientific computing is applied linear algebra:
– Ab Initial Quantum chemistry: Find eigenvalues of dense Hermitian matrices
– Structural dynamics: Find eigenvalues of sparse structured matrices
– PDE solvers: Sparse linear algebra … usually iterative solvers based on Sparse Matrix vector multiplication.

• Can we cover other important domains with Linear algebra?

Consider Graph algorithms



Linear Algebra: A graph as a matrix
• Adjacency Matrix: A square matrix (usually sparse) where rows and columns are labeled by 

vertices and non-empty values are edges from a row vertex to a column vertex

- ★ - ★ - - -

- - - - ★ - ★

- - - - - ★ -

★ - ★ - - - -

- - - - - ★ -

- - ★ - - - -

- - ★ ★ ★ - -

A =
From 
vertex 
(rows)

To vertex 
(columns)

By using a matrix, I turn algorithms working with graphs into linear algebra.

5

3

2

10

46

Design of the GraphBLAS API for C, Aydin Buluc, Tim Mattson, Scott McMillan, Jose Moreira, and Carl Yang, Graph Algorithms Building Blocks workshop at IPDPS, 2017
Mathematical Foundations of the GraphBLAS, Jeremy Kepner, et. al., IEEE High Performance Extreme Computing, 2016



Linear Algebra: TileDB a storage manager for Sparse Arrays

x

y

cell

empty cell

dimensions
tile

attribute values
(a1, a2, …, am)

Logical representation Physical representation

(x, y) a1

…

am
celltile

Filescoordinates

Tile: Atomic unit of processing

Manage array storage as tiles of different shape/size in the index space, but with ~equal number 
of non-empty cells

The TileDB Array Data Storage Manager, Stavros Papadopoulos, Kushal Datta, Samuel Madden, Tim Mattson, VLDB 2017
TileDB Inc website:   https://tiledb.io

19
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Connecting Linear Algebra and Relational algebras

• A project that started at MIT and migrated to UW
– Associative Arrays: Connect key-value stores to Linear Algebra and Relations  (MIT)
– LARA: Key-value stores + semirings à common algebra between Arrays and Relations
–  SPORES: Optimize queries through isomorphisms between relations and arrays (UW)

J. Kepner, V. Gadepally, S. Hutchison, H. Jananthan, T. Mattson, S. Samsi, and A. Reuther, Associative array model of SQL, NoSQL, and NewSQL databases, in High Performance Extreme 
Computing (HPEC), IEEE, Sep. 2016.
 
S. Hutchison, B. Howe, and D. Suciu, LaraDB: A minimalist kernel for linear and relational algebra computation, in SIGMOD Workshop on Algorithms and Systems for MapReduce and 
Beyond (BeyondMR), ACM, May 2017

Y. R. Wang, S Hutchison, J. Learng, B. Howe, and D. Suciu, SPORES: Sum-Product Optimization via Relational Equality Saturation for Large Scale Linear Algebra, arXif:2002.07951v1 
[cs.DB] 19 Feb 2020

Hypothesis: We can combine associative arrays, LARA, TileDB, and 
GraphBLAS projects coupled with a dynamic-runtime with operator-fusion to 

build a  universal algebraic programming system ….



So how did Intelligent Design work out for me?

21

Linear Algebra over sparse arrays 
does everything!!!



So how did Intelligent Design work out for me?
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Linear Algebra over sparse arrays 
does everything!!!

After  15 years of work … 
• The SuiteSparse GraphBLAS library (Tim Davis of Texas A&M) has been VERY successful.    It is 

used in multiple commercial products for general sparse linear algebra, NetworkX, and is the core of 
the RedisGraph (now FalkorDB) Graph Database.    

• TileDB has been launched as a startup and is doing well.

But for my Grand Vision of Linear Algebra as the grand unified algebra of all computing ….



So how did Intelligent Design work out for me?
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Linear Algebra over sparse arrays 

does everything!!!The fiery pit of doom



A path back to the promised land …

§ Intelligent design worked for databases, but it hasn’t worked elsewhere.  
It is not a useful way to create ”the next great programming 
environment”.

§ To understand the problem, consider the famous essay by Richard Gabriel 
… “The rise of worse is better”

24



Design Philosophy:
“The Right Thing”

Sim
plicity: Im

plem
entation

Sim
plicity: Interface

Correctness

Consistency

Com
pleteness

Get it right!

Re
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tiv
e 
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rit
y

Richard Gabriel:
“The rise of Worse is Better”
“https://www.jwz.org/doc/worse-is-better.html 

Example: Common Lisp, 
Schema, and supporting 
infrastructure … The MIT way



Design Philosophy:
“The Worse way”

Sim
plicity: Im

plem
entation

Sim
plicity: Interface

Correctness

Consistency

Com
pleteness

Get it right!

Re
la

tiv
e 

Pr
io

rit
y

Richard Gabriel:
The rise of Worse is Better”
“https://www.jwz.org/doc/worse-is-better.html 

Example: Unix and C 
… The New Jersey way

Third party names are the property of their owners



Which Design Philosophy wins?
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• History shows again and again … “Worse is better”.
– While “the right thing” community takes the time to “get it right”, “the worse way” folks are busy 

establishing a user base.
– “Worse way” programmers are conditioned to sacrifice safety, convenience, and hassle to get good 

performance.
– Since “the worse way” stresses implementation simplicity, its available everywhere.
– With a large user base, once “the worse way” has spread, there is pressure to improve it … so over 

time it evolves becomes good enough

C and Unix Common Lisp



The core idea behind “worse is better” 
is that successful programming models 

evolve … they do not spring from the 
minds of intelligent creators 



Evolution
§ Two Major Models of evolution:

29

– Phyletic Gradualism: 
A slow, continuous and  
gradual process  of change. 

– Punctuated Equilibrium:  
Long periods where little change 
is observed interspersed with 
periods of abrupt change.

What actually happens in biological Evolution?

tim
e

tim
e

How these trends would 
appear in the  fossil 

record 

Source: http://en.wikipedia.org/wiki/File:Punctuated-equilibrium.svg



What actually happens in Biology?

§ Both Phyletic Gradualism and Punctuated Equilibrium occur:
• Decompose the ecosystem into relatively isolated niches.

• Inside an isolated niche, phyletic Gradualism occurs

• An event changes the ecosystem (e.g. climate change) so what was once an obscure 
Niche becomes the new mainstream.

• Since an adaptive species evolved to match the “new mainstream” in a protected 
niche, it is now well positioned to dominate the new normal.

§ So the answer of phyletic gradualism vs. punctuated equilibrium is “both”.

30

How does this apply to programming models?



Evolution of parallel programming environments
§ Both Models are observed depending on the ecosystem:

31

– Research community  
– Phyletic Gradualism  with lateral gene 

transfer: 
(1) large, growing population of parallel 
programming systems, 
(2) occupy isolated environmental niches, 
and (3) few real users.

– Punctuated equilibrium … 
(1) a small number of stable programming 
systems that 
(2) change rarely in response to abrupt 
external forces. 

– Professional Application developers

Computer Science research creates the innovation so new 
“species” are ready when environmental conditions change and 

new “mainstream” systems emerge.



Key inflection points in HPC

• The first multiprocessor: Burroughs B5000, 1961
• SMP goes mainstream: the Intel Pentium technology in 1995 (up to two 

processors) and the Pentium Pro (up to four processors).

32

Dual socket Pentium pro board (~1997)

NVIDIA GeForce 8800/HD2900 (~2006)

• GPGPU programming starts in early 2000’s using primitive shader languages
• NVIDIA innovations lead to fully programmable GPUs

• MPPs (e.g. Paragon, TMC CM5, Cray T3D) in early 90’s,
• Clusters (Stacked Sparc pizza boxes late 80’s) and Linux clusters (from 

1994 to the present).

NCSA super-cluster (1998) and 
Paragon XPS 140 (1994)

https://en.wikipedia.org/wiki/Pentium_Pro
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Dual socket Pentium pro board (~1997)

NVIDIA GeForce 8800/HD2900 (~2006)
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25+ years later, OpenMP rules along side MPI
Parallel Programming model usage for C/C++/Fortran in publicly visible repositories in GitHub as of spring 2023*

*Quantifying OpenMP: Statistical insights into usage and adoption, T. Kadosh, N. Hasabnis, T. Mattson, Y. Pinter, and G. Oren, HPEC 2023.    https://arxiv.org/abs/2308.08002

We used a data-set created to 
train large language models 

for writing parallel code called 
HPCorpus*.

We scanned C, C++, and 
Fortran code inside visible 

repositories on Github.   

We did not collect files with 
.cu or .cuf suffices, hence 

CUDA usage is undercounted.



Key inflection points in HPC

• The first multiprocessor: Burroughs B5000, 1961
• SMP goes mainstream: the Intel Pentium technology in 1995 (up to two 

processors) and the Pentium Pro (up to four processors).
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Dual socket Pentium pro board (~1997)

NVIDIA GeForce 8800/HD2900 (~2006)

• GPGPU programming starts in early 2000’s using primitive shader languages
• NVIDIA innovations lead to fully programmable GPUs

• MPPs (e.g. Paragon, TMC CM5, Cray T3D) in early 90’s,
• Clusters (Stacked Sparc pizza boxes late 80’s) and Linux clusters (from 

1994 to the present).

NCSA super-cluster (1998) and 
Paragon XPS 140 (1994)

For GPUs, it’s a total 
mess.   The poor user 
has no idea which API 

to use.

https://en.wikipedia.org/wiki/Pentium_Pro


Why is GPU programming so messed up?
• With OpenMP and MPI, the user community committed to them ... and 

werre involved in their creation to make sure they did what was 
needed.

• The application community led and forced the vendor community 
to drop proprietary solutions and adopt open standards.

36

• For GPUs:
• Vendors were slow to create robust, fully featured implementations of open standards.
• The application community stuck with proprietary solutions EVEN as open solutions emerged.

• A key GPU vendor (who will remain unnamed) was happy to enjoy the benefits of 
owning the GPU platform … even if it hurt the long term interests of the HPC 
applications community.

• This unnamed vendor did a GREAT job of using that dominance to take excellent 
care of developers … they created a walled garden to which developers happily 
sacrificed their freedom. 



What’s the next great inflection point 
that will shape the parallel 
programming ecosystem?
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The changing pool of software developers

The number of Software developers is growing rapidly …

But look what the U.S. Bureau of 
Labor Statistics says …

Quick Facts: Computer Programmers

2022 Median Pay $97,800  per year

Entry-level Education Bachelor’s degree

Number of jobs, 2022 147,400

Job Outlook, 2022-2032 -11% (Decline)

Employment Change, 2022-2032 -16,600

How can both of these trends be correct?
https://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm

https://www.computersciencezone.org/developers.   2013 à 2019
https://www.speedinvest.com/blog/developer-tools-the-rise-of-the-developer-class. Update to 2032

2013 2019 2032

18.2
million

26.4
million

45
million

https://www.computersciencezone.org/developers
https://www.speedinvest.com/blog/developer-tools-the-rise-of-the-developer-class
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The most popular programming languages…

6.7%
15.9%
9.4%
28.0%

Log share of popularity score

2016

Professional programmers use Java, C, and C++.   
Professionals who program use Python

http://pypl.github.io/PYPL.html

Share of 
total scores

2020
8%
25%
7%
12%

https://www.usesignhouse.com/blog/github-stats. 
downloaded Oct 20, 2023

JavaScript (#1) and 
Python (#2) most 

common languages used 
in github repositories

https://www.usesignhouse.com/blog/github-stats


Source: Table 1 from “There’s plenty of room at the Top”, 
Leiserson, Thompson, Emer, Kuszmaul, Lampson, Sanchez, and 
Schardl,  Science Vol 368, June 5, 2020.

Why Python scares me … 
We have problems with Python …  Consider multiplication of 2 matrices of order 4096.

Implementation GFLOPS Absolute 
Speedup

Relative 
speedup

Fraction 
of peak

Python 2.7.9 0.005 1 -- 0.00

Java (OpenJDK 1.80_51) 0.058 11 10.8 0.01

C (GCC 5.2.1 20150826) 0.253 47 4.4 0.03

Parallel Loops 1.969 366 7.8 0.24

Cache oblivious (div&conq) 36,180 6,727 18.4 4.33

+ vectorization 124,914 23,224 3.5 14.96

+ AVX intrinsics 337,812 62,806 2.7 40.45

for i in xrange(4096): 
   for j in xrange(4096):
      for k in xrange(4096):
         C[i][j] += A[i][k] * B[k][j] 

Amazon AWS c4.8xlarge spot instance. Dual-socket Intel® Xeon® E5-2666 v3 CPU with 18 cores each. 60 
gibibytes of memory, shared 25-megabyte L3-cache and per-core 32–kibibyte (KiB) L1-data-cache and  256-
KiB private L2-cache. Fedora 22 with version 4.0.4 of the Linux kernel. Runtimes are best of five runs.

How do we get 
SW developers 
who write code 

like this

To get 
performance 

like this

Numba with 
Parallel 

Accelerator might 
get us this far

But it won’t do the 
algorithm 

restructuring 
required for this

Original  python code
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Software Developers of the Future

The number of Software developers is 
growing rapidly …

https://www.computersciencezone.org/developers.   2013 à 2019
https://www.speedinvest.com/blog/developer-tools-the-rise-of-the-developer-class. Update to 2032

2013 2019 2032

18.2
million

26.4
million

45
million

• Computational science has been more 
successful than we anticipated … we are 
entering a world where computing is ubiquitous 
and everyone well be a programmer.

• This means programmers moving forward will 
be “domain experts” and have little or no 
training in computer science.

• They won’t know:
– Numerical analysis … they won’t understand that 

floating point numbers are not real.
– They won’t know a pseudo-random number from 

a random number.
– They won’t know what an instruction set 

architecture is.
– Caches, TLBs, data races or anything pertaining 

to working across memory hierarchies.
Professionals who program use Python 

and do not understand hardware!!!

https://www.computersciencezone.org/developers
https://www.speedinvest.com/blog/developer-tools-the-rise-of-the-developer-class


Intel® AgilexTM FPGAs

Habana® Gaudi® 2
 deep learning accelerator

4th Gen Intel® Xeon® CPU with 56 
cores and Novel On-Die

Accelerators

A New Golden Age for Computer Architecture
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13th gen Intel® CoreTM  CPU
Hybrid Architecture with 16 efficiency 

cores and 8 performance cores + 
integrated GPU

Multi-chiplet packages with 
components from multiple 

vendors

Google® Tensor 
Processing Unit

Image sources: Intel, TPU from https://cloud.google.com/tpu, 
https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/

• CPUs
• Discreate GPU
• CPU + integrated GPU

Third Party Names and logos are the property of their owners.

Intel® Xe HPC GPU

NVIDIA® Grace Hopper

https://cloud.google.com/tpu


Intel® AgilexTM FPGAs

Habana® Gaudi® 2
 deep learning accelerator

4th Gen Intel® Xeon® CPU with 56 
cores and Novel On-Die

Accelerators

A New Dark Age for Computer Programmers

43

13th gen Intel® CoreTM  CPU
Hybrid Architecture with 16 efficiency 

cores and 8 performance cores + 
integrated GPU

Multi-chiplet packages with 
components from multiple 

vendors

Google® Tensor 
Processing Unit

Image sources: Intel, TPU from https://cloud.google.com/tpu, 
https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/

• CPUs
• Discreate GPU
• CPU + integrated GPU

Third Party Names and logos are the property of their owners.

Intel® Xe HPC GPU

NVIDIA® Grace Hopper

Developing a code-base for our applications that spans all 
this heterogeneity will be a real headache.  

Can we just ignore it?   Just because HW people build 
stuff, we don’t have write code for it, do we?

https://cloud.google.com/tpu


If you care about power, the world is heterogeneous?

Specialized processors 
doing operations suited to 
their architecture are more 

efficient than general 
purpose processors. 
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SGEMM GFLOP/Watt for different architectures

Source: Suyash Bakshi and Lennart Johnsson, “A Highly Efficient SGEMM Implementation using DMA on the Intel/Movidius 
Myriad-2.   IEEE International Symposium on Computer Architecture and High Performance Computing, 2020  

Intel® MovidiusTM 
MyriadTM 2 VPU

Intel® Xeon® 
E5-2697v2 CPU, 

3.5 GHz, 12 cores

Nvidia® 
K40TM GPU

Hence, future systems will be increasingly heterogeneous … 
GPUs, CPUs, FPGAs, and a wide range of accelerators

G
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Third Party Names and logos are the property of their owners.



… and it gets worse when you put these into systems

As the level of Hardware expertise among 
programmers has fallen, the complexity of 
systems has exploded. 

We need a fundamental shift on now we 
map SW onto HW

Ideally with declarative semantics … 
Core Patterns + coordination language/API

Application source code written with a 
high-level language such as Python:

Cloud Native HPC Laptop/serverHPC Cluster

• Application task-groups à  microservices
• Data structures à distributed object store
• Durable store: Persistent cloud store (e.g. S3)

• Application task-groups à processes
• Data  structures à across process memories
• Durable Store: Cluster file system

• Applications task-groups à threads
• Data  structures à process heap
• Durable store: local file system

Software generator Hardware cost 
model

Machine Programming
Intention Adaptation

InventionData Data

Data



What is Machine Programming?
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Traditional programming

• Three fundamental aspects of software development:
• Express the intent of their program

• Invent algorithms/data-structures

• Adapt the software to the details of the hardware for high performance

• Programmers do all this together when they write code.

Programmer 
Intent

Algorithm

HW Aware 
Implementation

Code

Past attempts to automatically generate code have failed since 
they tried to “do it all” together (just as a human would).
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Separation of concerns
• Let’s break up the software development process and consider each aspect 

Separately

Intention Adaptation

Invention

Programmer 
Intent

Algorithm

HW Aware 
Implementation

Code
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Separation of concerns

Intention Adaptation

Invention

Programmer 
Intent

Algorithm

HW Aware 
Implementation

Code

Programmers should just worry about expressing their intent.   We will 
automate the Invention and Adaptation work

• Let’s break up the software development process and consider each aspect 
Separately



The Three Pillars of Machine Programming
MAPL/PLDI’18

502nd ACM SIGPLAN Workshop on Machine Learning and Programming  Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

Justin Gottschlich, Intel
Armando Solar-Lezama, MIT
Nesime Tatbul, Intel
Michael Carbin, MIT
Martin, Rinard, MIT
Regina Barzilay, MIT
Saman Amarasinghe, MIT
Joshua B Tenebaum, MIT
Tim Mattson, Intel

A position paper laying out our vision for how to solve the machine 
programming problem. The three Pillars:

– Intention: Discover the intent of a programmer
– Invention: Create new algorithms and data structures
– Adaption: Evolve in a changing hardware/software world

Intention

Invention

Data

Program 
Synthesis

Inductive 
Programming

HW 
Design

Algorithm 
Creation

Holistic 
Compiler

Optimizations

Optimizing 
Code 

Generators

Reconfigurable 
HW/SW 

co-designs

Data Data

Adaptation

Retired

Merly.ai



Three Pillar Examples*
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*2nd ACM SIGPLAN Workshop on Machine Learning and Programming  
Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

• Intention
– “Halide: A language and compiler for optimizing parallelism, 

locality, and recomputation in image processing pipelines” 
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and 
Amarasinghe,) PLDI 2013

• Invention
– “Neo: a learned query optimizer”, (Marcus, Mao, Zhang, 

Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

• Adaptation
– “Learning to Optimize Halide with Tree Search and Random 

Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi, 
Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley) 
SIGGRAPH 2019

Intention

Invention

Data

Program 
Synthesis

Inductive 
Programming

HW 
Design

Algorithm 
Creation

Holistic 
Compiler

Optimizations

Optimizing 
Code 

Generators

Reconfigurable 
HW/SW 

co-designs

Data Data

Adaptation

• Put all three together … and something awesome happens
– “ScaMP” Intel/NSF joint research center at MIT
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Halide: Focusing on programmer intent

Func blur_3x3(Func input) {
  Func blur_x, blur_y;
  Var x, y, xi, yi;

  // The algorithm - no storage or order
  blur_x(x, y) = (input(x-1, y)  + input(x, y)  + input(x+1, y))/3;
  blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

  // The schedule - defines order, locality; implies storage
  blur_y.tile(x, y, xi, yi, 256, 32).vectorize(xi, 8).parallel(y);
  blur_x.compute_at(blur_y, x).vectorize(x, 8);

  return blur_y;
}

§ Algorithm:
• What the program does, 

• Written by a domain specialist

§ Schedule:
• How the program runs

• Written by SW/HW expert

Halide 
separates the 

Algorithm
 

from the

 Schedule

Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines, J Ragan-Kelley, C. Barnes, A. 
Adams, S. Paris, F. Durand, and S. Amarasinghe, PLDI, 2013, https://doi.org/10.1145/2491956.2462176

Intention Adaptation

InventionData Data

Data

https://doi.org/10.1145/2491956.2462176
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Halide Learned Schedules

“Learning to Optimize Halide with Tree Search and Random Programs” Intel CAPA funded,  SIGGRAPH 2019 
(https://dl.acm.org/citation.cfm?id=3322967)

Credit: Andrew Adams et al.

Productivity / 
Performance

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, Jonathan Ragan-
Kelley. Learning to Optimize Halide with Tree Search and Random Programs  ACM Transactions on Graphics 38(4) (Proceedings of ACM SIGGRAPH 2019)

Invention

AdaptationIntention

Data Data

Data

https://dl.acm.org/citation.cfm?id=3322967
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Superhuman Performance

“Learning to Optimize Halide with Tree Search and Random Programs” Intel CAPA funded,  SIGGRAPH 2019 
(https://dl.acm.org/citation.cfm?id=3322967)

Credit: Andrew Adams et al.Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, Jonathan Ragan-
Kelley. Learning to Optimize Halide with Tree Search and Random Programs  ACM Transactions on Graphics 38(4) (Proceedings of ACM SIGGRAPH 2019)

Invention

AdaptationIntention

Data Data

Data

https://dl.acm.org/citation.cfm?id=3322967


Three Pillar Examples*
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*2nd ACM SIGPLAN Workshop on Machine Learning and Programming  
Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

• Intention
– “Halide: A language and compiler for optimizing parallelism, 

locality, and recomputation in image processing pipelines” 
(Ragan-Kelley, Barnes, Adams, Paris, Durand, and 
Amarasinghe,) PLDI 2013

• Invention
– “Neo: a learned query optimizer”, (Marcus, Mao, Zhang, 

Alizadeh, Kraska, Papaernmanouil, Tatbul) VLDB 2019

• Adaptation
– “Learning to Optimize Halide with Tree Search and Random 

Programs” (Adams, Ma, Anderson, Baghdadi, Li, Gharbi, 
Steiner, Johnson, Fatahalian, Durand, Ragan-Kelley) 
SIGGRAPH 2019

Intention

Invention

Data

Program 
Synthesis

Inductive 
Programming

HW 
Design

Algorithm 
Creation

Holistic 
Compiler

Optimizations

Optimizing 
Code 

Generators

Reconfigurable 
HW/SW 

co-designs

Data Data

Adaptation

• Put all three together … and something awesome happens
– “ScaMP” Intel/NSF joint research center at MIT



ScaMP: Scalable Machine Programming
A five-year research program at MIT funded by Intel and NSF (Launched Oct 2022)
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Intention Adaptation

InventionData Data

Data

I want to build a 
web based 
workflow 

management 
system for fluid 

dynamics 
simulations

Source code 
expressed in 

terms of 
composable  

DSLs

Correct by 
construction code 

generators

Verified DSL 
compilers

Learned 
autoschedulers

Learned cost 
models

Performance 
History database

Clusters of 
heterogeneous 

nodes

Conversation 
(iterative 

refinement)

Initial “spec”

Source: https://www.intel.com/content/www/us/en/research/news/new-machine-programming-research-at-mit.html?cid=iosm&source=linkedin&campid=intel_ai_-
_@intelai_social_media_content_calendar&content=100003476010351&icid=always-on&linkId=100000158650577

executable

MIT PIs
• Saman Amarasinghe
• Michael Carbin
• Adam Chlipala
• Jonathan Ragan-Kelley
• Armondo Solar-Lezama



Conclusion/Summary
§ Programming models change when external factors (usually HW changes) force a change … not 

because people want something more “elegant”
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§ Application developers have a great deal of power to 
shape the programming models they have to work with 
… but only if they work together to speak with one voice 
and push vendors to do the right thing.

§ If you become “trapped under one vendor’s rule” its 
your own fault.  REFUSE to use proprietary 
programming models.

§ Changes in programmers and their training will force us 
to develop machine programing.  We can do this if we 
separate our concerns between intention, invention and 
adaptation and build tools for each concern and 
generate the right solutions.

Buy my book.  Try it … you’ll like it
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