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Objectives of Information Security - CIA

• Confidentiality
• Only authorized parties should be able to access the required data

• Access mean to understand the contents of the data
• Should not disclose unnecessary content

• Integrity
• The content should only be altered by authorized users intentionally

• Not tempered or degraded
• Purposely or inadvertently

• Non-repudiation

• Availability
• Timely accessibility of data to authorized entities when needed

• System availability
• Communication channel accessibility
• Data readiness

11/4/2023
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Why is Security Challenging?

• Correctness
• Met specification (e.g. ISA spec)

• No vulnerability means …
• No extra features beyond the specification
• No side-channels

• Speculation
• Transient states
• Physical manifestation

• But we want …
• Performance
• Observability
• Testing/debugging
• …

11/4/2023
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Cryptographic Failures (Sensitive Data Exposure)

• #2 of the Top 10 Attacks by OWASP® 2021
• Failures related to cryptography / leakage of information

• One attack vector: side-channel
• Security exploit that attempts to extract secrets from a chip/system
• Leads to unintended data leakage

• Types of side-channel
• Physical

• Power usage of chip
• Radiation of light
• Timing

• Microarchitectural
• Software based
• Hybrid

11/4/2023

6
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Microarchitectural Side-Channel

• What is microarchitecture? Why?
• Implementation of (Instruction Set) Architecture (ISA)

• Ex. Of ISA x86-64, ARMv8-A, RISC-V, MIPS

• Multiple implementations of one ISA

• Program computes on private data
• Interact with microarchitecture optimization
• Data dependent hardware resource modulation

• Observable by malicious threat actors

• Why this is so insidious?
• Need no physical access

• Cloud: multi-tenant
• Threat agent is a “legitimate” tenant of the cloud

11/4/2023
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Microarchitectural Side-Channel (2)

• Why this is so insidious? (cont.)
• Shared resource as the covert channel

• Host has no explicit control of the share resource
• Behavior can be affected/observed by another tenant

• Conflicting goals – performance vs. security
• Slowing down of Moore’s law → more microarchitecture optimization

• Increasing attack surfaces

• Cause
• Speed up common cases

• Lower latency when the “technique” works
• Longer latency otherwise

• Performance monitoring mechanisms

11/4/2023
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Started with Cache

• High-level intro to cache • Principles behind caching
• Temporal locality

• Re-use of specific data in time

• Spatial locality
• Use of data close to each other
• Example loop:

• for ( …..) { sum=sum+x[i];}

• When CPU read
• Cache Hit

• Fast – lower latency

• Cache Miss
• Slow – longer latency

11/4/2023
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Prime+Probe [Per05, OST06]

• Attacker chooses a cache-
sized memory buffer

• Attacker accesses all the lines 
in the buffer, filling the cache 
with its data

• Victim executes, evicting 
some of the attackers lines 
from the cache

• Attacker measures the time to 
access the buffer
• Accesses to cached lines is 

faster than to evicted lines
• Learn victim’s address

11/4/2023
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Memory:
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[Per05] C. Percival, "Cache Missing for Fun and Profit", BSDCan, 2005
[OST06] D. A. Osvik, A. Shamir and E. Tromer, "Cache Attacks and Countermeasures: The Case of AES", CT-RSA 2006
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Flush+Reload [Y&F14]

• Work on cache lines (vs. cache sets in Prime+Probe)
• Needs physical memory sharing with victim
• Attacker use “CLFLUSH” to evict line
• Due to inclusive property victim private cache line evicted also

11/4/2023
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Y. Yarom & K. Falkner, “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack,” 23rd USENIX Sec Symp, 2014 
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Flush+Reload (Cont.)

• Attacker waits
• Victim reload the cache line
• Attacker reload and use read time stamp counter to time (rdtsc)

• If fast then line in L3 (used by victim) else in DRAM (not used by 
victim)

11/4/2023
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A Demo of Cache Covert Channel

• What can threat actor do with cache side channels?
• Cryptographic key leakage
• A simple way to establish a covert channel to leak data 

11/4/2023
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Other On-Chip Shared Structures

• TLBs [Gra 18]
• L1iTLB, L1dTLB, L2TLB contention
• Reverse engineered by experimenting with page walks and perf cntr
• Access set of L1dTLB and observe sharing between two threads
• Observe EdDSA ECC key multiplication

• Functional Units [Ald 19]
• Port contention of SMT

• On-chip networks [PLF 20]
• Ring contention

• Overlapped segments

11/4/2023
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Lord of the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are Practical, 30th USENIX Security Symp. 2021
Port Contention for Fun and Profit. In 2019 IEEE Symposium on Security and Privacy (SP).  2019
Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks, 27th USENIX Security Symp. 2018
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DRAM in a Computer System

• Non-inclusive L3
• Isolate on-chip shared L3

11/4/2023
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DRAM Die Internal

• Banks are independent

11/4/2023
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DRAM Internal Abstraction – Page of 8K

• ACT – activate a row/page (tRAS)
• Read a portion of bits out (burst)
• Page policy

• Close page
• Open page

• Locality

• Access to same bank slow
• Access to different banks

• faster

11/4/2023
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Access Time Disparity Due to Row Buffer [PGM16]

• Behavior of memory access time
• Row hits – lower latency (180-216 cycles no row conflicts)
• Row miss/conflicts – higher latency

11/4/2023
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P. Pessl et. al, “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,” 25th USENIX Sec Symp, 2016
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Reverse-Engineering DRAM Addressing (1)

• Reconnaissance
• Memory controller (MC) uses physical address
• Need to determine the physical address mapping

• CPU vendors (MC) do not disclose mapping functions
• As an advantage to competitor
• Security enhancement

• Assume linear equation
• Actual procedure

• Download SW from github which generate random addresses and time 
access latency

• Investigate HW system parameters
• DRAM DIMM
• Channel
• Rank
• Banks

11/4/2023
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Reverse Engineer Address Mapping (2)

• Experiment on my Dell OptiPlex 7760 aoi
• 32GB DRAM – 2 DIMMs/2 Ranks/1 Channel/DDR4
•  (7, 14), (15, 19), (16, 20), (17, 21), (18, 22), (8, 9, 12, 13, 15, 18)

• HW/Project
• Github download -https://github.com/IAIK/drama

11/4/2023
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Speculation to Enhance Performance

• IPC (or CPI) - How to do more per clock?
• Reducing memory delays → Caches
• Working during delays → Speculative execution to increase 

parallelism

• Example of speculation

• Branch predictor
• Assume result of “if()” is ‘true’ (based on prior history)
• CPU starts foo() execution speculatively -- but doesn’t commit changes
• When value arrives from memory and condition of “if()” is evaluated

• Correct: Commit speculative work – performance gain
• Incorrect: Discard speculative work

11/4/2023

23

if (uncached_value_usually_1 == 1)
       foo()

Implementation

Specification

Test/Monitoring



S. L. Lu

Software security requirement - CPUs runs instructions correctly

Vulnerability in Transient State

Regular execution

Erroneous speculative execution

Set up the conditions so the processor will make 
a desired speculation mistake

Mistake leaks sensitive data into a 
covert channel (e.g. state of the 
cache)

Fetch the sensitive data from the covert channel

11/4/2023
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Does making + discarding mistakes violate this assumption?

Kocher, “Spectre Attacks: Exploiting Speculative Execution,” https://arxiv.org/abs/1801.01203
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Conditional Branch (Variant 1) Attack Example [Koc 18]

• Array bound checking

• Assume code segment above is in kernel API
• Unsigned int x comes from untrusted caller

• Execution without speculation is safe
• CPU will not evaluate array2[array1[x]*4096] unless x < array1_size

• What about with speculative execution?

if (x < array1_size)

   y = array2[array1[x]*4096];

11/4/2023
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Kocher, “Spectre Attacks: Exploiting Speculative Execution,” https://arxiv.org/abs/1801.01203
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Conditional Branch (Variant 1) Attack (Spectre) [Koc 18]

• Array bound checking

• Before attack:
• Train branch predictor to 

expect if() is true
(e.g. call with x < array1_size)

• Evict array1_size and array2[] 
from cache

if (x < array1_size)

   y = array2[array1[x]*4096];

Contents don’t matter

Memory & Cache Status

array1_size = 00000008

Memory at array1 base address:
 8 bytes of data (value doesn’t matter)
 [… lots of memory up to array1 base+N…] 
 02 F1 98 CC 90...(something secret)

array2[ 0*4096]

array2[ 1*4096]

array2[ 2*4096]

array2[ 3*4096]

array2[ 4*4096]

array2[ 5*4096]

array2[ 6*4096]

array2[ 7*4096]

array2[ 8*4096]

array2[ 9*4096]

array2[10*4096]

array2[11*4096]

Uncached Cached  

only care about cache status

11/4/2023

26
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Kocher, “Spectre Attacks: Exploiting Speculative Execution,” https://arxiv.org/abs/1801.01203

Conditional Branch (Variant 1) Attack (Spectre)

• Array bound checking

• Attacker calls victim with x=9 (>8)
• Speculative exec - waiting for 

array1_size (not in $)
• Predict that if() is true
• Read address (array1 base + x)  with out-

of-bounds x (speculatively)
• Read returns secret byte = 02  (fast – in 

cache)
• Request memory at (array2 base + 

02*4096)
• Brings array2[02*4096] into the cache
• Realize if() is false: discard speculative 

work
• Finish operation & return to caller

if (x < array1_size)

   y = array2[array1[x]*4096];

Contents don’t matter

Memory & Cache Status

array1_size = 00000008

Memory at array1 base address:
 8 bytes of data (value doesn’t matter)
 [… lots of memory up to array1 base+N…] 
 02 F1 98 CC 90...(something secret)

array2[ 0*4096]

array2[ 1*4096]

array2[ 2*4096]

array2[ 3*4096]

array2[ 4*4096]

array2[ 5*4096]

array2[ 6*4096]

array2[ 7*4096]

array2[ 8*4096]

array2[ 9*4096]

array2[10*4096]

array2[11*4096]

Uncached Cached  

only care about cache status

Attacker measures read time for array2[i*4096]
 Read for i=02 is fast (cached), revealing secret byte

 Repeat with many x (eg ~10KB/s)
11/4/2023
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Interrupt Requests Side-Channels [Ma 2015]

• No active contented process -  1
• Passive reading aggregated graphics interrupt counts (OS) -  2

• Infer from statistics collected to predict GPU tasks (ML)
• Events (prediction rate)

• GUI apps (99.95%)
• GPGPU workloads (100%)
• Webpage visits
• Different video players
• PDF documents

11/4/2023
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https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=7752&context=sis_research
On the Effectiveness of Using Graphics Interrupt as a Side Channel for User Behavior Snooping, IEEE T. on Dep & Sec computing, v. 19, 2022
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Spy In the GPU-box [Dut 23]

• Heterogeneous system
• GPU + CPU

• Covert channel between GPUs
• Need to reverse engineer GPU cache 

11/4/2023
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S. Dutta et. al., Spy in the GPU-box: Covert and Side Channel Attacks on Multi-GPU Systems, ISCA 2023 
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Security Enhancement Structure - PAC Vulnerability

• What is PAC (Pointer Authentication Codes)?
• A “security” feature from ARM to guard against pointer integrity

• ARMv8.3-A
• Unused address bits
• Dynamically instrumented

• Add PAC (pacia__)
• Authenticate (autia__)

• Usage example – func call
• Entry – create a PAC in LR
• Exit – check LR

11/4/2023

31

PAC it up: Towards Pointer Integrity using ARM Pointer Authentication, USENIX Security 2019
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Apple M1 PACMAN Attack [Rav 22]

• Leveraging microarchitecture side-channel & memory corruption
• PAC protects illegal memory access (buffer overflow)

• Verify the signature (hash)
• If different system halts

• But … there is the speculation state!
• Guess the hash in speculation state

11/4/2023
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PACMAN: Attacking ARM Pointer Authentication with Speculative Execution, ISCA 2022
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There is a Bigger Fish [Coo 22]

• What is the true side channel?
• Website fingerprinting example

• Previous publication pointed to cache
• Scientific approach

• Hypothesis
• Verify

• Turns out to be interrupts

11/4/2023
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There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted Side-Channel Attack, ISCA 2022 
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Metior: Evaluate Obfuscating Defense Schemes

• It is an arm race
• A weakness is discovered
• Methods proposed to block the channel
• New weakness is found (even on the methods proposed)

• A formal model

11/4/2023
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Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes, ISCA 2023
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Classification

• Side-channels enabled by
• Shared structures
• Speculation
• Performance counters

• Channel types
• Persistent

• States that persist until next events

• Ephemeral
• Transient states – attacker/victim must cohabit

• Attack types
• Active

• Affects victim

• Passive

11/4/2023
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Mitigation

• Complete clean slate design
• Compatibility challenge
• Cost – formal verification?

• Mitigation
• Partition 

• Strick isolation
• No shared structures

• Performance impact

• Obfuscation
• Add noise

11/4/2023
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Possible Obfuscation Approaches

• Static analysis/data analytic
• Given an implementation
• Formalize all potential modulation

• To mitigate one must find the modulation
• Aid in reverse engineering

• Build graph - evaluate
• Dynamic monitoring

• Detection of active leakage
• Patterns?
• Does it need performance counters?

• Dynamic randomization - obfuscation
• Source side

• Intelligent fuzzing of software
• System side

• Insertion of disturbance
• Maximize effect of noise while minimize effects on performance

11/4/2023
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https://web.eecs.umich.edu/~barisk/public/morpheus.pdf
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Summary

• Security is important when there is no trust
• Security is challenging
• Microarchitecture side channel is particularly dangerous

• No need for physical access
• Against design goals
• Increasing attack surfaces

• Possible approach
• Static
• Dynamic
• Need efficient and general solution

11/4/2023
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Thank you!

Q&A

11/4/2023
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