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Objectives of Information Security - CIA

* Confidentiality

* Only authorized parties should be able to access the required data
* Access mean to understand the contents of the data
* Should not disclose unnecessary content

* Integrity
* The content should only be altered by authorized users intentionally

* Not tempered or degraded
* Purposely or inadvertently

* Non-repudiation
* Availability
* Timely accessibility of data to authorized entities when needed
e System availability

 Communication channel accessibility
e Data readiness



Why is Security Challenging?

* Correctness
* Met specification (e.g. ISA spec)
* No vulnerability means ...

* No extra features beyond the specification

* No side-channels
* Speculation Test/Monitoring
* Transient states
* Physical manifestation

* But we want ... Implementation
* Performance
* Observability
* Testing/debugging

Implementation
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Cryptographic Failures (Sensitive Data Exposure)

* #2 of the Top 10 Attacks by OWASP® 2021
* Failures related to cryptography / leakage of information

 One attack vector: side-channel

* Security exploit that attempts to extract secrets from a chip/system
* Leads to unintended data leakage

* Types of side-channel
* Physical
* Power usage of chip
* Radiation of light
* Timing
* Microarchitectural
e Software based

* Hybrid

https://owasp.org/www-project-mobile-top-10/2014-risks/m4-unintended-data-leakage
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Microarchitectural Side-Channel

o o o o ‘? ‘?
What is microarchitecture? Why: /" implementation )

* Implementation of (Instruction Set) Architecture (ISA)
e Ex. Of ISA x86-64, ARMvVS8-A, RISC-V, MIPS

* Multiple implementations of one ISA

* Program computes on private data
* Interact with microarchitecture optimization k[
* Data dependent hardware resource modulation
* Observable by malicious threat actors
* Why this is so insidious?
* Need no physical access

e Cloud: multi-tenant
* Threat agent is a “legitimate” tenant of the cloud

4

Test/Monitoring |
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Microarchitectural Side-Channel (2)

* Why this is so insidious? (cont.)
* Shared resource as the covert channel

* Host has no explicit control of the share resource
* Behavior can be affected/observed by another tenant

* Conflicting goals — performance vs. security
* Slowing down of Moore’s law — more microarchitecture optimization
* Increasing attack surfaces

e Cause

* Speed up common cases
* Lower latency when the “technique” works
* Longer latency otherwise

* Performance monitoring mechanisms

Passive Information Gathering & Active Information Leakage

11/4/2023



Started with Cache

* High-level intro to cache

Smaller, faster,
more $, subset
Of blocks

Cache: 4 9 10 3
Data is copied between
10 levels in block-sized
transfer units
0 1 2 3
4 5 6 7
Memory: 3 9 10 11
12 13 14 15

11/4/2023

Larger, slower, cheaper memory

10

* Principles behind caching
* Temporal locality
* Re-use of specific data in time

 Spatial locality

 Use of data close to each other

* Example loop:
 for(....) {sum=sum+x[i];}

e When CPU read

* Cache Hit

* Fast — lower latency
e Cache Miss

e Slow - longer latency

Cache/Cache Hierarchy is a Microarchitecture Technique



Prime+Probe [Per05, OSTO06]

e Attacker chooses a cache-
sized memory buffer

» Attacker accesses all the lines
in the buffer, filling the cache
with its data

* Victim executes, evicting
some of the attackers lines
from the cache

* Attacker measures the time to

access the buffer
* Accesses to cached lines is
faster than to evicted lines
* Learn victim’s address

11/4/2023
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Flush+Reload [Y&F14]

* Work on cache lines (vs. cache sets in Prime+Probe)
* Needs physical memory sharing with victim
* Attacker use “CLFLUSH” to evict line

* Due to inclusive property victim private cache line evicted also

VICTIM CORE ATTACKER CORE

Shared L3 CACHE I

11/4/2023 Y. Yarom & K. Falkner, “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack,” 234 USENIX Sec Symp, 2014
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Flush+Reload (Cont.)

e Attacker waits
* Victim reload the cache line

 Attacker reload and use read time stamp counter to time (rdtsc)
* If fast then line in L3 (used by victim) else in DRAM (not used by
victim)

VICTIM CORE ATTACKER CORE

Shared L3 CACHE [ ]

11/4/2023



A Demo of Cache Covert Channel

e What can threat actor do with cache side channels?
* Cryptographic key leakage
* A simple way to establish a covert channel to leak data

A SIU@EVT-WSU-132: ~/covert
% ./sender

: $ ./receiver
Current setting: p = 500 b = 150
se press enter.

Please type a message.

bitrate (B/s): 248.016
Please type a message.
b

bitrate (B/s): 247.494
Please type a message.
lo

bitrate (B/s): 247.341
Please type a message.
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Other On-Chip Shared Structures

* TLBs [Gra 18]
e L1iTLB, L1dTLB, L2TLB contention
* Reverse engineered by experimenting with page walks and perf cntr
* Access set of L1dTLB and observe sharing between two threads
* Observe EdDSA ECC key multlpllcatlon

* Functional Units [Ald 19] == e e

uOps uOps

* Port contention of SMT .

Port0| |Port1 [Port5| Port6| | Prt2 Port3| Port4 Port7

* On-chip networks [PLF 20] llll """ LR

IIIIIIIIIIII

INT D

VVVVVV

* Ring contention 1 | L
* Overlapped segments

[ Core 0 | | Core 1 | | Core 2 | | Core 3 | | Core 4 | | Core 5 | | Core 6 | ‘ Core 7 | Memory Subsystem

L L | | L L | L L Translation Leak-a d Buffer: Defeating Cache Side- h I Protections with TLB Attacks, 27t USENIX Security Symp. 2018
" : ; - - . - : Port Contention for and Profit. In 2019 IEEE Sympos on Security and Privacy (SP). 2019
| Slice 0 | | Slice 1 } | Slice 2 | | Slice 3 | | Slice 4 | | Slice 5 | | Slice 6 | | Slice 7 | Lord of the Ring(s): Sd Ch nel Attacks on the CPU On Ch ip Ring Interconnect Are Practical, 30" USENIX Security Symp. 2021

11/4/2023
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DRAM in a Computer System

* Non-inclusive L3
* Isolate on-chip shared L3

CPUO

MC

2-Sockets Rack SYstem

11/4/2023



DRAM Die Internal

* Banks are independent

Example of 2Gb DRAM Die Organization

128Mb
128Mb

I0/Pads Area

1,

128Mb Half Bank Includes \\
32 SA Bands and
33 4Mb sub-arrays.

11/4/2023
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OPEN BL in Commodity DRAM

| 8K
Suba rray/O/ BL E
| SA SA SA
§u’i;;rray 1 /BL /BL
SA SA SA
BL
SA SA SA
/BL /BL
SA SA SA
Subarray 15 BL




DRAM Internal Abstraction — Page of 8K

* ACT — activate a row/page (tRAS)

* Read a portion of bits out (burst)

* Page policy

* Close page
* Open page
* Locality
* Access to same bank slow
* Access to different banks ...
 faster
Row Buffer

Column 0

Column 1

Column 2

Column N

He [ ||| e e e | e | e | f [ |4 |
He [ || e e e | e | e | f [ |4 |
He [ ||| e e e | e | e | f [ |4 |
He [ ||| e e e | e | e | f [ |4 |
He [ || e e e | e | e | f [ |4 |
He [ || e e e | | e | f [ |4 |
He [ || e e e | e | e | f [ |4 |
x4 x4 x4 x4

Page Size = number of bits




Access Time Disparity Due to Row Buffer [PGM16]

* Behavior of memory access time
* Row hits — lower latency (180-216 cycles no row conflicts)
* Row miss/conflicts — higher latency

NN ANNNNAMNANNNANANNNNANANN]

A N

10/

. |3@Cache hit Cache miss, row hit E= Cache miss, row conflict
& 7 = 7
% 10° _ . 11
Q 7 Z=Rr=
5 . - 7l =R =N =
TR | ] Z=m éE ?E
= 10 m _/////: Z=0%=
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10! H H r? < H I E
7007 Z= ZENZE
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Access time [CPU cycles]

P. Pessl et. al, “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,” 25t USENIX Sec Symp, 2016




Reverse-Engineering DRAM Addressing (1)

* Reconnaissance
 Memory controller (MC) uses physical address

* Need to determine the physical address mapping

e CPU vendors (MC) do not disclose mapping functions
* As an advantage to competitor
e Security enhancement

* Assume linear equation
* Actual procedure
* Download SW from github which generate random addresses and time

access latency

* Investigate HW system parameters
* DRAM DIMM
* Channel
* Rank
* Banks



Reverse Engineer Address Mapping (2)

* Experiment on my Dell OptiPlex 7760 aoi

* 32GB DRAM - 2 DIMMs/2 Ranks/1 Channel/DDR4

* (7, 14), (15, 19), (16, 20), (17, 21), (18, 22), (8,9, 12, 13, 15, 18)
 HW/Project

* Github download -https://github.com/IAIK/drama

BGO- AN

. (%
%
A}
/

BG1<

Ranks

[ M

BAO<

BAl<

Channel,

11/4/2023
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Speculation to Enhance Performance

* |IPC (or CPI) - How to do more per clock?
* Reducing memory delays =2 Caches
* Working during delays —> Speculative execution to increase
para"e'ism / Implementation \
* Example of speculation

if (uncached_value_usually 1==1)
foo()

 Branch predictor | 4
» Assume result of “if()” is ‘true’ (based on prior history) —T/Menitorine ]
* CPU starts foo() execution speculatively -- but doesn’t commit changes

 When value arrives from memory and condition of “if()” is evaluated

e Correct: Commit speculative work — performance gain
* Incorrect: Discard speculative work

11/4/2023



Vulnerability in Transient State

Software security requirement - CPUs runs instructions correctly

Does making + discarding mistakes violate this assumption?

Reqular execution
Set up the conditions so the processor will make
a desired speculation mistake

Fetch the sensitive data from the covert channel

Erroneous speculative execution

Mistake leaks sensitive data into a
covert channel (e.g. state of the
cache)

Kocher, “Spectre Attacks: Exploiting Speculative Execution,” https://arxiv.org/abs/1801.01203



Conditional Branch (Variant 1) Attack Example [Koc 18]

* Array bound checking
1f (x < arrayl size)
y = arrayZlarrayl[x]*4096];

* Assume code segment above is in kernel API
* Unsigned int x comes from untrusted caller

* Execution without speculation is safe
* CPU will not evaluate array2[array1[x]*4096] unless x < arrayl_size

 What about with speculative execution?



Conditional Branch (Variant 1) Attack (Spectre) [Koc 18]

* Array bound checking

1f (x < arrayl size)

y = array2larrayl[x]*4096];

* Before attack:
* Train branch predictor to
expect if() is true
(e.g. call with x < array1_size)
* Evict arrayl_size and array2[]
from cache

Memory & Cache Status
arrayl size = 00000008

Memory at arrayl base address:
8 bytes of data (value doesn’t matter)
[... lots of memory up to arrayl base+N...]
02 F1 98 CC 90... (something secret)

~

array2[ 0%*4096]

array2[ 1*4096]

array2[ 2*4096]

array2[ 3*4096]

array2[ 4*4096]

array2[ 5*4096] |Contents don’t matter
array2[ 6*4096] (only care about cache status
array2[ 7*4096]

array2[ 8*4096]

array2[ 9*4096]

array2[10*4096]

arrayZ[ 1*4090]

Uncached Cached

%

Kocher, “Spectre Attacks: Exploiting Speculative Execution,” https://arxiv.org/abs/1801.01203




Conditional Branch (Variant 1) Attack (Spectre)
* Array bound checking

1f (x < arrayl size)

Y

= arrayZlarrayl[x

1*40906] ;

 Attacker calls victim with x=9 (>8)
* Speculative exec - waiting for
arrayl_size (notin S)

Predict that if() is true

Read address (arrayl base + x) with out-
of-bounds x (speculatively)

Read returns secret byte = 02 (fast -
cache)

Request memory at (array2 base +

02*4096)
Brings arrav2l02*40961 into the cache

Memory & Cache Status

arrayl size = 00000008

Memory at arrayl base address:
8 bytes of data (value doesn’t matter)
[... lots of memory up to arrayl base+N...]
02 F1 98 CC 90... (something secret)

~

array2[ 0%*4096]

array2[ 1*4096]

array2[ 3*4096]

array2[ 4*4096]

array2[ 5*4096] |Contents don’t matter

>

array2[ 6%4096] (only care about cache status
array2[ 7*4096]

array2[ 8*4096]

arrayZ[ 9*4096]

Realize Attacker measures read time for array2 [i *4096]

work

* Finish ope * Repeatwith many x (eg ~10KB/s)

» Read for i=02 is fast (cached), revealing secret byte d

Cached

ution,” https://arxiv.org/abs/1801.01203
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Interrupt Requests Side-Channels [Ma 2015]

* No active contented process - (D

* Passive reading aggregated graphics interrupt counts (0S) - 2
* Infer from statistics collected to predict GPU tasks (ML)

* Events (prediction rate)
* GUI apps (99.95%)
 GPGPU workloads (100%)
 Webpage visits

Interrupt requests (IRQs)

. . 1
* Different video players "
* PDF documents :
. payload for ' CUDA ' Graphical : Video .
\ contentions ;5 payload | | payload Memory Ad';mss = D“’T
--------------- L - P ac
|
® ® r -------- [
¥
other spy victim our spy DRAM <:i DMA
processes application process controller

On the Effectiveness of Using Graphics Interrupt as a Side Channel for User Behavior Snooping, IEEE T. on Dep & Sec computing, v. 19, 2022
11/4/2023 https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=7752&context=sis_research



Spy In the GPU-box [Dut 23] 3

* Heterogeneous system

* GPU + CPU |
* Covert channel between GPUs G / ‘2.5 (Trojan or Victim) G (SpY)
* Need to reverse engineer GPU cache GPU A GPU B
PCle NVLink NVLink PCle
SM | ... § ... SM SM ... ... SM
SM ... ... SM SM | ... .. SM
e O S
Y3 0 oJ T T
A A = A A A = A A
W v v T v v
High BW Memory (HBM) High BW Memory (HBM)

«—) Local Access Path
<«—) Remote Access Path

11/4/2023

S. Dutta et. al., Spy in the GPU-box: Covert and Side Channel Attacks on Multi-GPU Systems, ISCA 2023



Security Enhancement Structure - PAC Vulnerability

 What is PAC (Pointer Authentication Codes)?
* A “security” feature from ARM to guard against pointer integrity

 ARMvS.3-A
 Unused address bits 63 55 va_size —
i i Virtual A
* Dynamically instrumented PAC PAC : irtual Addr
« Add PAC (pacia__) tag / reserved LYJ B o

e Authenticate (autia_ )

e Usage example — func call
* Entry — create a PACin LR

upper/lower bit

31

. Pointer address
* Exit—check LR A %
I"uncli*nn : [ pacia pointer, _mndifigzij
paciasp ; @ create PAC i : N
stp FP, LR, [SP, #0] ; store LR PAkey [F——  keyed-MAC
. L. "
Idp FP, LR, [SP, #0] ; load LR : <\
autiasp : @ authenticate Pointer (| PAC PAC address
ret ; return

11/4/2023 PAC it up: Towards Pointer Integrity using ARM Pointer Authentication, USENIX Security 2019



Apple M1 PACMAN Attack [Rav 22] ”

* Leveraging microarchitecture side-channel & memory corruption

* PAC protects illegal memory access (buffer overflow
 Verify the signature (hash)
* |f different system halts

* But ... there is the speculation state!
* Guess the hash in speculation state

Micro-
Architecture
Side-channel

Memory
Corruption
Attacks

o Correct PAC Mispredict Window
1| if (cond): #BR1 Correct PAC Mispredict Window
verified_ptr = AUT(guess_ptr) BT:;;'?;:;:LEE
Load(verified_ptr) ' Mispredict - Squash
Mispredict AUT Squash BR1 BR1
BR1 ptr BR1 -
(a) A data PACMAN gadget. AU \pSe
Incorrect PAC Mispredict Window Incorrect PAC Mispredict Window
| :e _ BTB Mispredicts
1| 1f (cc.mc_lj. #BR1 ' . BR2 Target
verified_ptr = AUT(guess_ptr) Mispredict AUT Squash Mispredict Squash
BR verified_ptr #BR2 BR1 ptr BR1 BR1 BR1
AUT ptr

(b) An instruction PACMAN gadget.
11/4/2023

(c) Timeline for data access leak. (d) Timeline for instruction fetch leak.

PACMAN: Attacking ARM Pointer Authentication with Speculative Execution, ISCA 2022



There is a Bigger Fish [Coo 22]

e What is the true side channel?

* Website fingerprinting example

* Previous publication pointed to

* Scientific approach
* Hypothesis
* Verify
* Turns out to be interrupts

nytimes.com

M | ] [ feroo
| 1 |
I Il I
amazon.com L 2000
(I | | |
11l | | | [ 21000
(1l | |
weather.com 23000
T T
(T T T T \IHHH\I
[ T T \IHIH\ | HH 21000

0 3 6
Time (s )
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int Trace[T=1000];
loop {
counter = 0;

int Trace[T=1000];
loop {

counter = 0;
t_begin = time() ; t_begin = time() ;
do {

// count iterations

do {
// count iterations

cache

counter++; counter++;
// memory accesses

i++) {
tmp = buffer [i « 64]

}
} while(time () -t begin < P);

for (1=0; 1<size;

} while(time ()-t begin < P);

Trace[t_begin] = counter; Trace[t_begin] = counter;

j }

Time

victim
process

attacker
process

T2: finish executing
mterrupt handler

T1: an interrupt
arrives at the core

There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted Side-Channel Attack, ISCA 2022



Metior: Evaluate Obfuscating Defense Schemes

*|tis an arm race
* A weakness is discovered
* Methods proposed to block the channel
* New weakness is found (even on the methods proposed)

A formal model

Side-Channel
Components

Random Variable
Representations

Random Variable
Relationships

Victim Attacker . .
Secret Modulation Modulation ngsb::f:'t?:; Atstae?:t:trs
(§4.2) Pattern Pattern (§4.4) Gucss
(§4.3) (§4.3) ;
v
o | :
v v L4 v |
S—> S X —>» Xy —>» XY —> Y —>» Y-6 —> G
A A A
Victim's Interactions Probabilistic Guessing
with Microarchitecture Obfuscation Secret
(§4.3) (§4.4) (§4.9)

Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes, ISCA 2023
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11/4/2023 S.L.Lu



Classification

* Side-channels enabled by
e Shared structures
e Speculation
* Performance counters

* Channel types
* Persistent
 States that persist until next events

* Ephemeral
* Transient states — attacker/victim must cohabit

 Attack types

e Active
e Affects victim

* Passive



Mitigation

* Complete clean slate design
* Compatibility challenge
* Cost — formal verification?

* Mitigation
* Partition

e Strick isolation

* No shared structures
* Performance impact

 Obfuscation
 Add noise

11/4/2023

Test/Monitoring

37



Possible Obfuscation Approaches

e Static analysis/data analytic
* Given an implementation

* Formalize all potential modulation
* To mitigate one must find the modulation
* Aid in reverse engineering

* Build graph - evaluate
* Dynamic monitoring

* Detection of active leakage
* Patterns?
* Does it need performance counters?

* Dynamic randomization - obfuscation
* Source side
* Intelligent fuzzing of software

* System side
* Insertion of disturbance

/ Implementation \

. 4

| Test/Monitoring |

* Maximize effect of noise while minimize effects on performance

11/4/2023

https://web.eecs.umich.edu/~barisk/public/morpheus.pdf
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Summary

* Security is important when there is no trust
* Security is challenging

* Microarchitecture side channel is particularly dangerous
* No need for physical access
* Against design goals
* Increasing attack surfaces
* Possible approach
* Static
* Dynamic
* Need efficient and general solution




Thank you!

Q&A

11/4/2023
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