
S. L. Lu

Microarchitectural Side-Channel
Vulnerabilities – Can Data Analytics
Help?

Shih-Lien (Linus) Lu
Washington State University

11/4/2023

S. L. Lu

Outlines

• Security goal and challenge of securing systems
• Common attacks and side-channels

• Physical side-channels

• Microarchitecture side-channels and …
• Examples

• Cache side-channel
• Main memory side-channel
• Speculation state side-channel

• Some recent publications

• What can we do?
• Static analysis
• Dynamic monitoring

• Summary
11/4/2023

2

S. L. Lu

Objectives of Information Security - CIA

• Confidentiality
• Only authorized parties should be able to access the required data

• Access mean to understand the contents of the data
• Should not disclose unnecessary content

• Integrity
• The content should only be altered by authorized users intentionally

• Not tempered or degraded
• Purposely or inadvertently

• Non-repudiation

• Availability
• Timely accessibility of data to authorized entities when needed

• System availability
• Communication channel accessibility
• Data readiness

11/4/2023

3

S. L. Lu

Why is Security Challenging?

• Correctness
• Met specification (e.g. ISA spec)

• No vulnerability means …
• No extra features beyond the specification
• No side-channels

• Speculation
• Transient states
• Physical manifestation

• But we want …
• Performance
• Observability
• Testing/debugging
• …

11/4/2023

4

Implementation

Specification

Test/Monitoring

Specification

Implementation

S. L. Lu

Outlines

• Security goal and challenge of securing systems
• Common attacks and side-channels

• Physical side-channels

• Microarchitecture side-channels and …
• Examples

• Cache side-channel
• Main memory side-channel
• Speculation state side-channel

• Some recent publications

• What can we do?
• Static analysis
• Dynamic monitoring

• Summary
11/4/2023

5

S. L. Lu

Cryptographic Failures (Sensitive Data Exposure)

• #2 of the Top 10 Attacks by OWASP® 2021
• Failures related to cryptography / leakage of information

• One attack vector: side-channel
• Security exploit that attempts to extract secrets from a chip/system
• Leads to unintended data leakage

• Types of side-channel
• Physical

• Power usage of chip
• Radiation of light
• Timing

• Microarchitectural
• Software based
• Hybrid

11/4/2023

6

https://owasp.org/www-project-mobile-top-10/2014-risks/m4-unintended-data-leakage

S. L. Lu

Outlines

• Security goal and challenge of securing systems
• Common attacks and side-channels

• Physical side-channels

• Microarchitecture side-channels and …
• Examples

• Cache side-channel
• Main memory side-channel
• Speculation state side-channel

• Some recent publications

• What can we do?
• Static analysis
• Dynamic monitoring

• Summary
11/4/2023

7

S. L. Lu

Microarchitectural Side-Channel

• What is microarchitecture? Why?
• Implementation of (Instruction Set) Architecture (ISA)

• Ex. Of ISA x86-64, ARMv8-A, RISC-V, MIPS

• Multiple implementations of one ISA

• Program computes on private data
• Interact with microarchitecture optimization
• Data dependent hardware resource modulation

• Observable by malicious threat actors

• Why this is so insidious?
• Need no physical access

• Cloud: multi-tenant
• Threat agent is a “legitimate” tenant of the cloud

11/4/2023

8

Implementation

Specification

Test/Monitoring

S. L. Lu

Microarchitectural Side-Channel (2)

• Why this is so insidious? (cont.)
• Shared resource as the covert channel

• Host has no explicit control of the share resource
• Behavior can be affected/observed by another tenant

• Conflicting goals – performance vs. security
• Slowing down of Moore’s law → more microarchitecture optimization

• Increasing attack surfaces

• Cause
• Speed up common cases

• Lower latency when the “technique” works
• Longer latency otherwise

• Performance monitoring mechanisms

11/4/2023

9

Passive Information Gathering & Active Information Leakage

S. L. Lu

Started with Cache

• High-level intro to cache • Principles behind caching
• Temporal locality

• Re-use of specific data in time

• Spatial locality
• Use of data close to each other
• Example loop:

• for (…..) { sum=sum+x[i];}

• When CPU read
• Cache Hit

• Fast – lower latency

• Cache Miss
• Slow – longer latency

11/4/2023

10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper memory

Smaller, faster,
more $, subset

Of blocks

Cache:

Memory:

4

410

10

8 9 14 3

Data is copied between
levels in block-sized

transfer units

4 10

Cache/Cache Hierarchy is a Microarchitecture Technique

S. L. Lu

Prime+Probe [Per05, OST06]

• Attacker chooses a cache-
sized memory buffer

• Attacker accesses all the lines
in the buffer, filling the cache
with its data

• Victim executes, evicting
some of the attackers lines
from the cache

• Attacker measures the time to
access the buffer
• Accesses to cached lines is

faster than to evicted lines
• Learn victim’s address

11/4/2023

11

Memory:

Cache:

[Per05] C. Percival, "Cache Missing for Fun and Profit", BSDCan, 2005
[OST06] D. A. Osvik, A. Shamir and E. Tromer, "Cache Attacks and Countermeasures: The Case of AES", CT-RSA 2006

S. L. Lu

Flush+Reload [Y&F14]

• Work on cache lines (vs. cache sets in Prime+Probe)
• Needs physical memory sharing with victim
• Attacker use “CLFLUSH” to evict line
• Due to inclusive property victim private cache line evicted also

11/4/2023

12

L1 CACHE

L2 CACHE

Shared L3 CACHE

VICTIM CORE ATTACKER CORE

Y. Yarom & K. Falkner, “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack,” 23rd USENIX Sec Symp, 2014

S. L. Lu

Flush+Reload (Cont.)

• Attacker waits
• Victim reload the cache line
• Attacker reload and use read time stamp counter to time (rdtsc)

• If fast then line in L3 (used by victim) else in DRAM (not used by
victim)

11/4/2023

13

L1 CACHE

L2 CACHE

Shared L3 CACHE

VICTIM CORE ATTACKER CORE

S. L. Lu

A Demo of Cache Covert Channel

• What can threat actor do with cache side channels?
• Cryptographic key leakage
• A simple way to establish a covert channel to leak data

11/4/2023

14

S. L. Lu

Other On-Chip Shared Structures

• TLBs [Gra 18]
• L1iTLB, L1dTLB, L2TLB contention
• Reverse engineered by experimenting with page walks and perf cntr
• Access set of L1dTLB and observe sharing between two threads
• Observe EdDSA ECC key multiplication

• Functional Units [Ald 19]
• Port contention of SMT

• On-chip networks [PLF 20]
• Ring contention

• Overlapped segments

11/4/2023

15

Lord of the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are Practical, 30th USENIX Security Symp. 2021
Port Contention for Fun and Profit. In 2019 IEEE Symposium on Security and Privacy (SP). 2019
Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks, 27th USENIX Security Symp. 2018

S. L. Lu

DRAM in a Computer System

• Non-inclusive L3
• Isolate on-chip shared L3

11/4/2023

16

CPU0

Chipset2
-S

o
ck

et
s

R
ac

k
Sy

st
e

m

CPU1

DRAM DIMMS

DRAM DIMMS

DRAM DIMMS

DRAM DIMMS

CPU0

CPU1

M
C

M
C

DIMM with 9 DRAM dice (x8)

Ch A

Ch B

Ch A

Ch B

S. L. Lu

DRAM Die Internal

• Banks are independent

11/4/2023

17

Example of 2Gb DRAM Die Organization

Coldec. Coldec.
C

lo
ck

/A
d

d
 S

p
in

e

1
2

8
M

b

128Mb Half Bank Includes
 32 SA Bands and
 33 4Mb sub-arrays.

4Mb
SA

4Mb
SA

4Mb
SA

1
2

8
M

b

1
2

8
M

b

IO/Pads Area

Bank

OPEN BL in Commodity DRAM

SA

SA

SA

SA

SA

SA

Subarray 0

Subarray 1

Subarray 15

BL

/BL

BL

/BL

SA

SA

SA

SA

SA

SA

BL

/BL/BL

5
1

2

8K

S. L. Lu

DRAM Internal Abstraction – Page of 8K

• ACT – activate a row/page (tRAS)
• Read a portion of bits out (burst)
• Page policy

• Close page
• Open page

• Locality

• Access to same bank slow
• Access to different banks

• faster

11/4/2023

18

Row Buffer

Row 0

…

Column 0

… … …

Column 1 Column 2 Column N

x4 x4 x4 x4

Row N

Row 1

Row 2

….

….

….
Page Size = number of bits

….

S. L. Lu

Access Time Disparity Due to Row Buffer [PGM16]

• Behavior of memory access time
• Row hits – lower latency (180-216 cycles no row conflicts)
• Row miss/conflicts – higher latency

11/4/2023

19

P. Pessl et. al, “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,” 25th USENIX Sec Symp, 2016

S. L. Lu

Reverse-Engineering DRAM Addressing (1)

• Reconnaissance
• Memory controller (MC) uses physical address
• Need to determine the physical address mapping

• CPU vendors (MC) do not disclose mapping functions
• As an advantage to competitor
• Security enhancement

• Assume linear equation
• Actual procedure

• Download SW from github which generate random addresses and time
access latency

• Investigate HW system parameters
• DRAM DIMM
• Channel
• Rank
• Banks

11/4/2023

20

S. L. Lu

Reverse Engineer Address Mapping (2)

• Experiment on my Dell OptiPlex 7760 aoi
• 32GB DRAM – 2 DIMMs/2 Ranks/1 Channel/DDR4
• (7, 14), (15, 19), (16, 20), (17, 21), (18, 22), (8, 9, 12, 13, 15, 18)

• HW/Project
• Github download -https://github.com/IAIK/drama

11/4/2023

21

8 7 6912 11 101316 15 141720 19 18212223 ……

BG0

BG1

Rank

BA0

BA1

Channel

S. L. Lu

Outlines

• Security goal and challenge of securing systems
• Common attacks and side-channels

• Physical side-channels

• Microarchitecture side-channels and …
• Examples

• Cache side-channel
• Main memory side-channel
• Speculation state side-channel

• Some recent publications

• What can we do?
• Static analysis
• Dynamic monitoring

• Summary
11/4/2023

22

S. L. Lu

Speculation to Enhance Performance

• IPC (or CPI) - How to do more per clock?
• Reducing memory delays → Caches
• Working during delays → Speculative execution to increase

parallelism

• Example of speculation

• Branch predictor
• Assume result of “if()” is ‘true’ (based on prior history)
• CPU starts foo() execution speculatively -- but doesn’t commit changes
• When value arrives from memory and condition of “if()” is evaluated

• Correct: Commit speculative work – performance gain
• Incorrect: Discard speculative work

11/4/2023

23

if (uncached_value_usually_1 == 1)
 foo()

Implementation

Specification

Test/Monitoring

S. L. Lu

Software security requirement - CPUs runs instructions correctly

Vulnerability in Transient State

Regular execution

Erroneous speculative execution

Set up the conditions so the processor will make
a desired speculation mistake

Mistake leaks sensitive data into a
covert channel (e.g. state of the
cache)

Fetch the sensitive data from the covert channel

11/4/2023

24

Does making + discarding mistakes violate this assumption?

Kocher, “Spectre Attacks: Exploiting Speculative Execution,” https://arxiv.org/abs/1801.01203

S. L. Lu

Conditional Branch (Variant 1) Attack Example [Koc 18]

• Array bound checking

• Assume code segment above is in kernel API
• Unsigned int x comes from untrusted caller

• Execution without speculation is safe
• CPU will not evaluate array2[array1[x]*4096] unless x < array1_size

• What about with speculative execution?

if (x < array1_size)

 y = array2[array1[x]*4096];

11/4/2023

25

Kocher, “Spectre Attacks: Exploiting Speculative Execution,” https://arxiv.org/abs/1801.01203

S. L. Lu

Conditional Branch (Variant 1) Attack (Spectre) [Koc 18]

• Array bound checking

• Before attack:
• Train branch predictor to

expect if() is true
(e.g. call with x < array1_size)

• Evict array1_size and array2[]
from cache

if (x < array1_size)

 y = array2[array1[x]*4096];

Contents don’t matter

Memory & Cache Status

array1_size = 00000008

Memory at array1 base address:
 8 bytes of data (value doesn’t matter)
 [… lots of memory up to array1 base+N…]
 02 F1 98 CC 90...(something secret)

array2[0*4096]

array2[1*4096]

array2[2*4096]

array2[3*4096]

array2[4*4096]

array2[5*4096]

array2[6*4096]

array2[7*4096]

array2[8*4096]

array2[9*4096]

array2[10*4096]

array2[11*4096]

Uncached Cached  

only care about cache status

11/4/2023

26

Kocher, “Spectre Attacks: Exploiting Speculative Execution,” https://arxiv.org/abs/1801.01203

S. L. Lu

Kocher, “Spectre Attacks: Exploiting Speculative Execution,” https://arxiv.org/abs/1801.01203

Conditional Branch (Variant 1) Attack (Spectre)

• Array bound checking

• Attacker calls victim with x=9 (>8)
• Speculative exec - waiting for

array1_size (not in $)
• Predict that if() is true
• Read address (array1 base + x) with out-

of-bounds x (speculatively)
• Read returns secret byte = 02 (fast – in

cache)
• Request memory at (array2 base +

02*4096)
• Brings array2[02*4096] into the cache
• Realize if() is false: discard speculative

work
• Finish operation & return to caller

if (x < array1_size)

 y = array2[array1[x]*4096];

Contents don’t matter

Memory & Cache Status

array1_size = 00000008

Memory at array1 base address:
 8 bytes of data (value doesn’t matter)
 [… lots of memory up to array1 base+N…]
 02 F1 98 CC 90...(something secret)

array2[0*4096]

array2[1*4096]

array2[2*4096]

array2[3*4096]

array2[4*4096]

array2[5*4096]

array2[6*4096]

array2[7*4096]

array2[8*4096]

array2[9*4096]

array2[10*4096]

array2[11*4096]

Uncached Cached  

only care about cache status

Attacker measures read time for array2[i*4096]
 Read for i=02 is fast (cached), revealing secret byte

 Repeat with many x (eg ~10KB/s)
11/4/2023

27

S. L. Lu

Outlines

• Security goal and challenge of securing systems
• Common attacks and side-channels

• Physical side-channels

• Microarchitecture side-channels and …
• Examples

• Cache side-channel
• Main memory side-channel
• Speculation state side-channel

• Some recent publications

• What can we do?
• Static analysis
• Dynamic monitoring

• Summary
11/4/2023

28

S. L. Lu

Interrupt Requests Side-Channels [Ma 2015]

• No active contented process - 1
• Passive reading aggregated graphics interrupt counts (OS) - 2

• Infer from statistics collected to predict GPU tasks (ML)
• Events (prediction rate)

• GUI apps (99.95%)
• GPGPU workloads (100%)
• Webpage visits
• Different video players
• PDF documents

11/4/2023

29

https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=7752&context=sis_research
On the Effectiveness of Using Graphics Interrupt as a Side Channel for User Behavior Snooping, IEEE T. on Dep & Sec computing, v. 19, 2022

S. L. Lu

Spy In the GPU-box [Dut 23]

• Heterogeneous system
• GPU + CPU

• Covert channel between GPUs
• Need to reverse engineer GPU cache

11/4/2023

30

S. Dutta et. al., Spy in the GPU-box: Covert and Side Channel Attacks on Multi-GPU Systems, ISCA 2023

S. L. Lu

Security Enhancement Structure - PAC Vulnerability

• What is PAC (Pointer Authentication Codes)?
• A “security” feature from ARM to guard against pointer integrity

• ARMv8.3-A
• Unused address bits
• Dynamically instrumented

• Add PAC (pacia__)
• Authenticate (autia__)

• Usage example – func call
• Entry – create a PAC in LR
• Exit – check LR

11/4/2023

31

PAC it up: Towards Pointer Integrity using ARM Pointer Authentication, USENIX Security 2019

Virtual Addr

64b

S. L. Lu

Apple M1 PACMAN Attack [Rav 22]

• Leveraging microarchitecture side-channel & memory corruption
• PAC protects illegal memory access (buffer overflow)

• Verify the signature (hash)
• If different system halts

• But … there is the speculation state!
• Guess the hash in speculation state

11/4/2023

32

Micro-
Architecture
Side-channel

Memory
Corruption
Attacks

PACMAN: Attacking ARM Pointer Authentication with Speculative Execution, ISCA 2022

S. L. Lu

There is a Bigger Fish [Coo 22]

• What is the true side channel?
• Website fingerprinting example

• Previous publication pointed to cache
• Scientific approach

• Hypothesis
• Verify

• Turns out to be interrupts

11/4/2023

33

There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted Side-Channel Attack, ISCA 2022

S. L. Lu

Metior: Evaluate Obfuscating Defense Schemes

• It is an arm race
• A weakness is discovered
• Methods proposed to block the channel
• New weakness is found (even on the methods proposed)

• A formal model

11/4/2023

34

Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes, ISCA 2023

S. L. Lu

Outlines

• Security goal and challenge of securing systems
• Common attacks and side-channels

• Physical side-channels

• Microarchitecture side-channels and …
• Examples

• Cache side-channel
• Main memory side-channel
• Speculation state side-channel

• Some recent publications

• What can we do?
• Static analysis
• Dynamic monitoring

• Summary
11/4/2023

35

S. L. Lu

Classification

• Side-channels enabled by
• Shared structures
• Speculation
• Performance counters

• Channel types
• Persistent

• States that persist until next events

• Ephemeral
• Transient states – attacker/victim must cohabit

• Attack types
• Active

• Affects victim

• Passive

11/4/2023

36

S. L. Lu

Mitigation

• Complete clean slate design
• Compatibility challenge
• Cost – formal verification?

• Mitigation
• Partition

• Strick isolation
• No shared structures

• Performance impact

• Obfuscation
• Add noise

11/4/2023

37

Implementation

Specification

Implementation

Specification

Test/Monitoring

S. L. Lu

Possible Obfuscation Approaches

• Static analysis/data analytic
• Given an implementation
• Formalize all potential modulation

• To mitigate one must find the modulation
• Aid in reverse engineering

• Build graph - evaluate
• Dynamic monitoring

• Detection of active leakage
• Patterns?
• Does it need performance counters?

• Dynamic randomization - obfuscation
• Source side

• Intelligent fuzzing of software
• System side

• Insertion of disturbance
• Maximize effect of noise while minimize effects on performance

11/4/2023

38

Implementation

Specification

Test/Monitoring

https://web.eecs.umich.edu/~barisk/public/morpheus.pdf

S. L. Lu

Summary

• Security is important when there is no trust
• Security is challenging
• Microarchitecture side channel is particularly dangerous

• No need for physical access
• Against design goals
• Increasing attack surfaces

• Possible approach
• Static
• Dynamic
• Need efficient and general solution

11/4/2023

39

S. L. Lu

Thank you!

Q&A

11/4/2023

	Slide 1: Microarchitectural Side-Channel Vulnerabilities – Can Data Analytics Help?
	Slide 2: Outlines
	Slide 3: Objectives of Information Security - CIA
	Slide 4: Why is Security Challenging?
	Slide 5: Outlines
	Slide 6: Cryptographic Failures (Sensitive Data Exposure)
	Slide 7: Outlines
	Slide 8: Microarchitectural Side-Channel
	Slide 9: Microarchitectural Side-Channel (2)
	Slide 10: Started with Cache
	Slide 11: Prime+Probe [Per05, OST06]
	Slide 12: Flush+Reload [Y&F14]
	Slide 13: Flush+Reload (Cont.)
	Slide 14: A Demo of Cache Covert Channel
	Slide 15: Other On-Chip Shared Structures
	Slide 16: DRAM in a Computer System
	Slide 17: DRAM Die Internal
	Slide 18: DRAM Internal Abstraction – Page of 8K
	Slide 19: Access Time Disparity Due to Row Buffer [PGM16]
	Slide 20: Reverse-Engineering DRAM Addressing (1)
	Slide 21: Reverse Engineer Address Mapping (2)
	Slide 22: Outlines
	Slide 23: Speculation to Enhance Performance
	Slide 24: Vulnerability in Transient State
	Slide 25: Conditional Branch (Variant 1) Attack Example [Koc 18]
	Slide 26: Conditional Branch (Variant 1) Attack (Spectre) [Koc 18]
	Slide 27: Conditional Branch (Variant 1) Attack (Spectre)
	Slide 28: Outlines
	Slide 29: Interrupt Requests Side-Channels [Ma 2015]
	Slide 30: Spy In the GPU-box [Dut 23]
	Slide 31: Security Enhancement Structure - PAC Vulnerability
	Slide 32: Apple M1 PACMAN Attack [Rav 22]
	Slide 33: There is a Bigger Fish [Coo 22]
	Slide 34: Metior: Evaluate Obfuscating Defense Schemes
	Slide 35: Outlines
	Slide 36: Classification
	Slide 37: Mitigation
	Slide 38: Possible Obfuscation Approaches
	Slide 39: Summary
	Slide 40: Thank you!

