
Stateful Streaming with External Memory On Workstations
Daniel DeLayo ddelayo@cs.stonybrook.edu
Advised by Professor Michael A. Bender, Department of Computer Science

Event Detection in High-Bandwidth Streams

Real-time monitoring of high-rate data streams, with the goal 
of detecting and preventing malicious events, is a critical 
component of defense systems for cybersecurity.

Each component observation in a suspicious event may only 
occur very rarely and may be separated by billions of 
unrelated observations. These low-and-slow and are 
notoriously hard to detect.

To detect low-and-slow events, all observations must be 
stored and processed. Simple logging isn’t sufficient, as 
reports must be timely.

We ingest 4 to 10 million observations per second into RAM 
and Optane PMEM.

Timely Event Reporting 

RAM isn’t enough for Low-And-Slow events

Detecting a pattern of low-and-slow events is memory-intensive. 
If the data structures is RAM only, by the time the final 
observation in an event occurs, it is almost certain that some of 
the earlier observations have been discarded for lack of space.

Prior work¹ shows that current state-of-the-art solutions report 
almost no anomalies when the keyspace exceeds RAM for the 
Firehose benchmark. 2^20 ~ 1 million.

Timely Event Reporting: Given an endless stream of 
key-value pairs representing the changes to the state of the 
system, detect and report keys whenever said key becomes 
reportable with bounded delay.

The delay is bounded as a function of the span of the key; 
the span of a reportable key is the number of observations 
between the oldest and youngest observation in the report.

Example Problem: Ingest 5 billions keys-value pairs. One of 
these keys k appears at least twice, separated by one billion 
key-value pairs.

Goals: Report k (and only k) within 1 billion observations. 
Ingest millions of keys per second on a workstation. Primarily 
store data on external memory.

We Scale into External Memory: the LERT Max Gap: LERTs detect Low-And-Slow events
Last Bin Expiration means the oldest bin is up for expiration. 
We can calculate the minimum number of observations that 
must be inserted after a key in order for the key to expire. We 
call this the Max Gap.

While flushing, we can (repeatedly) merge keys with younger 
ones (if available), pushing back expiration until the younger 
key is expired.

That is, the Max Gap determines the longest interarrival 
count between keys before any prior state is able to be lost.

The LERTs Max Gap is a large fraction of the number of 
observations it can hold. 

Our solution is the Leveled External Memory Reporting Tree, 
or LERT. A LERT has b bins per level and each level has bins r 
times larger than the previous level.

An object is tracked by 
its age and level, or bin 
and level.

A flush increments an 
object’s age by 1. If it’s 
age reaches b, it is 
moved to the next level 
instead.

If a flush fills a bin 
(every r flushes into a 
level), the bin’s entire 
level is flushed.

We need to scale effectively into external memory to expand our 
manageable keyspace.
¹CLSAC’16, Stateful Streaming in Distributed Memory Supercomputers. Jon Berry and Alexandra Porter

A flush to level i includes a scan and flush of all previous 
levels. That is, when flushing to level i, objects are traversed 
in order regardless of level. 

Objects are merged, reported, and possibly flushed to the 
next level.

If a key is flushed from the bottom level, we simply expire it 
instead. We call this Last Bin Expiration.

That is, only keys in the last bin are subject to expiration.

By accessing external memory in a sequential scan, we’re 
able to process keys stored on external memory at high 
bandwidth.

With an extra buffer on top, we’re able to perform this 
sequential scan without interrupting insertings to the top 
level.


