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DoD Big Data 
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DoD Big Data 
- Hundreds of Stovepiped Databases -  

AUV = Autonomous Underwater Vehicle  

D
EN

SE
 D

AT
A D

EN
SE D

ATA 

Carrier Group 

IR Sensor 

EW Receiver 
SIGINT 

RF Sensor 

Space-
based 
Radar 

EA/EW 

AUV 
Submarine 

Compact 
Systems 

SPARSE DATA 
Data  

Intensive 
Cloud Thin  

  
Clients 

Wireless  
Devices Local  

Servers 

Utility 
Cloud 

Sensor Report Databases 
 
 
 
 
 
 

 

Thousands of human generated reports 

Sensor Data Databases 
 
 
 
 
 

 Millions of sensors with 100s of updates/sec 

EO 
Sensor 

Sensors Metadata Databases 
 
 
 
 
 
 

 

Mode, time, and position of each sensor update Advanced  
Destroyers 



Slide - 6 

Fast Analytics Multiple Databases 

Common Processing Architecture 

W
eb Service Layer 

Scalable Computing Infrastructure 

Government Database Challenges 
•  Sustaining rapid database ingest 
•  Fast database analytics 
•  Querying multiple diverse databases 

LLSuperCloud: Sharing HPC Systems for Diverse Rapid Prototyping, 
Reuther et al, IEEE HPEC 2013 
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Modern Database Paradigm Shifts 

NoSQL 

Relational Databases (SQL) 2006 

NewSQL 

1970 

Information Retrieval P. BAXENDALE, Editor 

A Relational Model of Data for 
Large Shared Data Banks 

E. F. CODD 
IBM Research Laboratory, San Jose, California 

Future users of large data banks must be protected from 
having to know how the data is organized in the machine (the 
internal representation). A prompting service which supplies 
such information is not a satisfactory solution. Activities of users 
at terminals and most application programs should remain 
unaffected when the internal representation of data is changed 
and even when some aspects of the external representation 
are changed. Changes in data representation will often be 
needed as a result of changes in query, update, and report 
traffic and natural growth in the types of stored information. 

Existing noninferential, formatted data systems provide users 
with tree-structured files or slightly more general network 
models of the data. In Section 1, inadequacies of these models 
are discussed. A model based on n-ary relations, a normal 
form for data base relations, and the concept of a universal 
data sublanguage are introduced. In Section 2, certain opera- 
tions on relations (other than logical inference) are discussed 
and applied to the problems of redundancy and consistency 
in the user’s model. 

KEY WORDS AND PHRASES: data bank, data base, data structure, data 
organization, hierarchies of data, networks of data, relations, derivability, 

redundancy, consistency, composition, join, retrieval language, predicate 
calculus, security, data integrity 

CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29 

1. Relational Model and Normal Form 

1 .I. INTR~xJ~TI~N 
This paper is concerned with the application of ele- 

mentary relation theory to systems which provide shared 
access to large banks of formatted data. Except for a paper 
by Childs [l], the principal application of relations to data 
systems has been to deductive question-answering systems. 
Levein and Maron [2] provide numerous references to work 
in this area. 

In contrast, the problems treated here are those of data 
independence-the independence of application programs 
and terminal activities from growth in data types and 
changes in data representation-and certain kinds of data 
inconsistency which are expected to become troublesome 
even in nondeductive systems. 

Volume 13 / Number 6 / June, 1970 

The relational view (or model) of data described in 
Section 1 appears to be superior in several respects to the 
graph or network model [3,4] presently in vogue for non- 
inferential systems. It provides a means of describing data 
with its natural structure only-that is, without superim- 
posing any additional structure for machine representation 
purposes. Accordingly, it provides a basis for a high level 
data language which will yield maximal independence be- 
tween programs on the one hand and machine representa- 
tion and organization of data on the other. 

A further advantage of the relational view is that it 
forms a sound basis for treating derivability, redundancy, 
and consistency of relations-these are discussed in Section 
2. The network model, on the other hand, has spawned a 
number of confusions, not the least of which is mistaking 
the derivation of connections for the derivation of rela- 
tions (see remarks in Section 2 on the “connection trap”). 

Finally, the relational view permits a clearer evaluation 
of the scope and logical limitations of present formatted 
data systems, and also the relative merits (from a logical 
standpoint) of competing representations of data within a 
single system. Examples of this clearer perspective are 
cited in various parts of this paper. Implementations of 
systems to support the relational model are not discussed. 

1.2. DATA DEPENDENCIES IN PRESENT SYSTEMS 
The provision of data description tables in recently de- 

veloped information systems represents a major advance 
toward the goal of data independence [5,6,7]. Such tables 
facilitate changing certain characteristics of the data repre- 
sentation stored in a data bank. However, the variety of 
data representation characteristics which can be changed 
without logically impairing some application programs is 
still quite limited. Further, the model of data with which 
users interact is still cluttered with representational prop- 
erties, particularly in regard to the representation of col- 
lections of data (as opposed to individual items). Three of 
the principal kinds of data dependencies which still need 
to be removed are: ordering dependence, indexing depend- 
ence, and access path dependence. In some systems these 
dependencies are not clearly separable from one another. 

1.2.1. Ordering Dependence. Elements of data in a 
data bank may be stored in a variety of ways, some involv- 
ing no concern for ordering, some permitting each element 
to participate in one ordering only, others permitting each 
element to participate in several orderings. Let us consider 
those existing systems which either require or permit data 
elements to be stored in at least one total ordering which is 
closely associated with the hardware-determined ordering 
of addresses. For example, the records of a file concerning 
parts might be stored in ascending order by part serial 
number. Such systems normally permit application pro- 
grams to assume that the order of presentation of records 
from such a file is identical to (or is a subordering of) the 
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Model 

E.F. Codd 
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Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber}@google.com

Google, Inc.

Abstract
Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
implemented, and deployed a distributed storage system
for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and thousands of machines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of
servers, and store up to several hundred terabytes of data.
In manyways, Bigtable resembles a database: it shares
many implementation strategies with databases. Paral-
lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
data out of memory or from disk.
Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client API. Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section 5 describes the
fundamentals of the Bigtable implementation, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides
measurements of Bigtable’s performance. We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string

To appear in OSDI 2006 1

Google 
BigTable 

Chang et al 
(2006) 

Scalable SQL and NoSQL Data Stores 
Rick Cattell 
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ABSTRACT 
 In this paper, we examine a number of SQL and so-
called “NoSQL” data stores designed to scale simple 
OLTP-style application loads over many servers.  
Originally motivated by Web 2.0 applications, these 
systems are designed to scale to thousands or millions 
of users doing updates as well as reads, in contrast to 
traditional DBMSs and data warehouses. We contrast 
the new systems on their data model, consistency 
mechanisms, storage mechanisms, durability 
guarantees, availability, query support, and other 
dimensions.  These systems typically sacrifice some of 
these dimensions, e.g. database-wide transaction 
consistency, in order to achieve others, e.g. higher 
availability and scalability. 
Note: Bibliographic references for systems are not 
listed, but URLs for more information can be found in 
the System References table at the end of this paper.  

Caveat: Statements in this paper are based on sources 
and documentation that may not be reliable, and the 
systems described are “moving targets,” so some 
statements may be incorrect. Verify through other 
sources before depending on information here. 
Nevertheless, we hope this comprehensive survey is 
useful!  Check for future corrections on the author’s 
web site cattell.net/datastores. 
Disclosure: The author is on the technical advisory 
board of Schooner Technologies and has a consulting 
business advising on scalable databases. 

1. OVERVIEW 
In recent years a number of new systems have been 
designed to provide good horizontal scalability for 
simple read/write database operations distributed over 
many servers.  In contrast, traditional database 
products have comparatively little or no ability to scale 
horizontally on these applications.  This paper 
examines and compares the various new systems. 
Many of the new systems are referred to as “NoSQL” 
data stores.  The definition of NoSQL, which stands 
for “Not Only SQL” or “Not Relational”, is not 
entirely agreed upon.  For the purposes of this paper, 
NoSQL systems generally have six key features: 

1. the ability to horizontally scale “simple 
operation” throughput over many servers,  

2. the ability to replicate and to distribute (partition) 
data over many servers, 

3. a simple call level interface or protocol (in 
contrast to a SQL binding), 

4. a weaker concurrency model than the ACID 
transactions of most relational (SQL) database 
systems, 

5. efficient use of distributed indexes and RAM for 
data storage, and 

6. the ability to dynamically add new attributes to 
data records. 

The systems differ in other ways, and in this paper we 
contrast those differences.  They range in functionality 
from the simplest distributed hashing, as supported by 
the popular memcached open source cache, to highly 
scalable partitioned tables, as supported by Google’s 
BigTable [1].  In fact, BigTable, memcached, and 
Amazon’s Dynamo [2] provided a “proof of concept” 
that inspired many of the data stores we describe here: 
• Memcached demonstrated that in-memory indexes 

can be highly scalable, distributing and replicating 
objects over multiple nodes. 

• Dynamo pioneered the idea of eventual 
consistency as a way to achieve higher availability 
and scalability: data fetched are not guaranteed to 
be up-to-date, but updates are guaranteed to be 
propagated to all nodes eventually. 

• BigTable demonstrated that persistent record 
storage could be scaled to thousands of nodes, a 
feat that most of the other systems aspire to. 

A key feature of NoSQL systems is “shared nothing” 
horizontal scaling – replicating and partitioning data 
over many servers.  This allows them to support a large 
number of simple read/write operations per second.  
This simple operation load is traditionally called OLTP 
(online transaction processing), but it is also common 
in modern web applications 
The NoSQL systems described here generally do not 
provide ACID transactional properties: updates are 
eventually propagated, but there are limited guarantees 
on the consistency of reads.  Some authors suggest a 
“BASE” acronym in contrast to the “ACID” acronym: 
• BASE = Basically Available, Soft state, 

Eventually consistent 
• ACID = Atomicity, Consistency, Isolation, and 

Durability 
The idea is that by giving up ACID constraints, one 
can achieve much higher performance and scalability.   

NewSQL 
Cattell (2010) 

SQL Era NoSQL Era NewSQL Era Future 
Polystore, high 

performance 
ingest and 
analytics 

Fast analytics inside databases Common interface Rapid ingest for internet search 

SQL = Structured Query Language 
NoSQL = Not only SQL 

Chapter 1

Storage and Database Management for Big

Data

1.1 Introduction

The ability to collect and analyze large amounts of data is a growing problem within the scientific

community. The growing gap between data and users calls for innovative tools that address the

challenges faced by big data volume, velocity and variety. While there has been great progress in

the world of database technologies in the past few years, there are still many fundamental consider-

ations that must be made by scientists. For example, which of the seemingly infinite technologies

are the best to use for my problem? Answers to such questions require a careful understanding of

the technology field in addition to the types of problems that are being solved. This chapter aims to

address many of the pressing questions faced by individuals interested in using storage or database

technologies to solve their big data problems.

This work is sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract #FA8721-05-C-0002.
Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Govern-
ment.
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Polystore Database Challenge 
-Providing a Common Mathematic Framework- 

v ATvAT
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SQL 
Set Operations 

NoSQL 
Graph Operations  

NewSQL 
Linear Algebra 

 
 
 

Associative Array Algebra Provided a Unified Mathematics for SQL, NoSQL, NewSQL 
 
 

Operations in All Representations are Equivalent 
 

A = NxM(i,j,v)          (i,j,v) = A       C = A ⊕ B      C = A ⊗ C       C = A B = A ⊕.⊗ B

from link to 

001 alice cited bob 
002 bob cited alice 
003 alice cited carl 

SELECT		
WHERE	from=alice	

Associative Arrays: HPEC’16a 
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• Data comes in all shapes and sizes 
–  Unstructured data 
–  Relational data   
–  Images 
–  Time series 

The World of Big Data 

Why force all data to fit into a single data store? 
 
Leave data in the storage engine that matches the data …. A 
concept we call Polystore 
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Exemplary Problems 

MIMIC II test dataset*  
•  >3 terabytes (TB) total 
•  1000s of intensive care unit  

patients from 2001-08 

* Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-
access intensive care unit database, Saeed, et al., Crit Care Med.  2011 

S-PI Overview Screen

Physiological Signals 
Electrocardiogram (ECG) 

traces, arterial blood 
pressure monitoring, 

pulse oximeter readings 

Freeform Text Data  
Caregiver (doctor/nurse) 

notes and test reports 

Structured Data 
Demographic 

information, lab test 
results, hospital 

accounting records 

SQL NoSQL NewSQL 

Ocean Genomics 
•  Very large (multiple TB) 
•  Contains mix of different types 

of data from collected from 
1000s of readings of ocean 
water samples 

 

Dataset	Contents:	

1) Raw Sequence Data (largest component) 

This piece of the dataset contains raw sequence data. For every individual sample, we get 
two primary files with DNA sequence: one comes from the left side of each given bit of 
DNA, the other file is the corresponding sequence from the right side. In FASTQ format, 
each sequence is given by the following: 
 
@<unique sequence identifier> (with a “/1” at the end for the left 
sequence, a “/2” for the right sequence) 
DNA sequence 
+<same unique sequence identifier> 
ASCII-encoded quality scores, telling how confident the sequencer is in 
how ‘correct’ each base is likely to be 

 
The full size files are usually multiple GB for each of the /1 and /2 files, with on average 
~20 million unique sequences each (though this can vary). An example of a raw 
sequence: 

 

 
Fig. 1.   Map describing all of the sets of archived samples at our disposal.  Samples cover a 
diverse range of ocean sites, each with unique features (see Table 1).  Color code is shown 
below.  All but the transect shown in black (AMT) also have samples on which we can do single 
call genome analysis.  We include here all of the samples we have in our freezers, but only 
selected ones will be processed. 

 
 
 
 
 
 
 

Structured Data  
Sensor metadata, legacy 
datasets, ocean sensor 

data 
 

Reports 
Field reports, analysts 
reports, memos, news 
articles, social media 

Sequence Data 
Genomic sequences 
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•  Historically: 
–  Federated Databases 

•  Mapping disparate database management systems via a single federated interface 
•  Characteristics: Single query language (often SQL), single data model (often relational) 
•  Examples: Garlic, R, IBM DB2 

–  Parallel Databases 
•  A single logical database or tables divided over multiple computing elements 
•  Examples: SciDB (Array model), Teradata (Relational model) 

•  Currently: 
–  Increasing need to support analysis of diverse data sources 
–  “One size does not fit all” – no single database management system that supports high 

performance on all kinds of data 

•  Polystore tenets: 
–  There is no single query language to rule them all 
–  Complete functionality of underlying database management systems is required 

The Case for Polystores 
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•  Introduction and Background 

•  BigDAWG 

–  What it is 

–  BigDAWG Initial Results 

–  BigDAWG in Action: Ocean Genomics 

–  S-Store Streaming Engine 

•  Summary and Future Work 

Outline 

BigDAWG = Big Data Working Group 
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•  Data Analytics & Processing Platforms 
–  New platforms for storing and processing “big data” 

•  Scalable Math and Algorithms 
–  Implementing parallel algorithms that scale to petabytes on thousands of machines 

•  Visualization 
–  Presenting very large, high rate data sets 

•  Hardware architecture 
–  Exploiting new advances in hardware 

•  Integration Across Multiple Data Processing Systems 
•  Benchmarks & Testbeds – Medical data, Oceanographic Data 

Our Approach: BigDAWG (the Big Data Working Group) 
 

BigDAWG is a large scale project meant to change the way we interact with very large datasets 
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Goal: A single interface for ALL data 

BigDAWG Polystore Reference Architecture 
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PostGRES	-	Count	Entries	

SciDB	-	Count	Entries	

PostGRES	-	Discrete	Entries	

SciDB	-	Discrete	Entries	

Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to

BigDAWG Common Interface/API 

Visualizations Applications 

Cast	 Cast	

SQL	 NoSQL	 NewSQL	Rela,onal	
DB	

Array	
DB	

…		
DB	

Clients 

Relational Island Array Island Island … 

Shim	Shim	 Shim	 Shim	 Shim	

Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we
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•  Focus on solutions rather than technology 

•  Goal 
–  Polystore reference architecture 
–  Support: 

•  High performance ingest and analytics 
•  Points along the location transparency vs. 

semantic completeness spectrum 

•  Foundational Operations 
–  BigDAWG Common interface  (interface) 
–  Common analytic translators (shim) 
–  Common data translators (cast) 
–  Multiple database support via islands 

BigDAWG Overview 
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Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to
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Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

BigDAWG Architecture: VLDB’15, HPEC’16b 
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•  BigDAWG Middleware 
–  Optimizer 
–  Monitor 
–  Executor 
–  Migrator 

 

BigDAWG Middleware 

Middleware Architecture 

10	

100	

1000	

10000	

100000	

1000	 10000	 100000	 1000000	 10000000	

Ti
m
e	
Ta
ke
n	
(m

ill
is
ec
on

ds
)	

Number	of	Database	Entries	

Time	taken	for	opera9ons	in	SciDB	and	PostGRES	

PostGRES	-	Count	Entries	

SciDB	-	Count	Entries	

PostGRES	-	Discrete	Entries	

SciDB	-	Discrete	Entries	

Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to
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Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

Middleware Details: HPEC’16c,HPEC’16d 
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BigDAWG Middleware 
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•  Responsible for moving data 
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•  May be explicit (user defined) or 
implicit (based on query plan) 

•  Interacts with monitor and executor 
modules 

Executor 

•  Responsible for physical execution 
of query plan and recording results 
that are shared with monitor module 

•  Makes use of migrator as needed to 
complete execution 

0

5

10

15

20

25

30

35

40

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

0 0.5 1 1.5 2

Q
ue

ry
 D

ur
at

io
n 

(M
in

s)

Zipfian Alpha

union
comparison
colocation
assignment
examination

Early stages of optimizer 



Slide - 19 

•  Islands are the trade-off between  
functionality and location transparency 

•  Islands have 
–  A Data Model 
–  A Language or Set of Operators 
–  A Set of Candidate Database Engines 

Semantic Islands as the Tradeoff 
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Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to
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Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

*  Islands do Intersection of engines 
*  BigDAWG does Union of Islands 
*  Islands are logical 
*  Also, degenerate islands for functionality 

User specifies the Island 
RELATIONAL(select avg(temp) from device) 

ARRAY(multiply(A,B)) 

Details: HPEC’15 
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Key BigDAWG Operations 
-Cast and Shim Operations- 

Shim Operation Example 
(find number of non-zero entries) 

nnz(T1) à SELECT COUNT(*) FROM T1
nnz(T2) à aggregate(T2, count(val));  
nnz(T3) à scan –t T3 --np

Details: HPEC’15 

•  Shim: Translates queries to native database language from island speak 
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Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to
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Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we
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Key BigDAWG Operations 
-Cast and Shim Operations- 

•  Cast: Translates data between database engines (or islands) 

Cast Operation Example 
(move data from one DB to another) 

CAST nnz(T1)  à  ArrayDB
CAST nnz(T3)  à  ArrayDB
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Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to
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Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

Details: HPEC’15 
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•  Support for 5 DB engines  
•  Island support 

–  Support for islands based on arrays, 
relational, iteration and streaming 

–  Support for degenerate islands (full 
semantic completeness at the cost of 
location transparency 

•  Cast operations based on  
associative arrays 

•  Developed a number of “apps” that can 
only be done via Polystore for medical 
and ocean genomics 

BigDAWG Prototype Implementation 
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Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to
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Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we
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BigDAWG Prototype Implementation 

Islands 
•  D4M (Associative Arrays) 
•  Myria (Iteration) 
•  Streams 
•  Degenerate Islands 

DB Engines 

Applications 
•  Data Exploration 
•  Data Visualization 
•  Deep Analytics 
•  Streaming Analytics 
•  Extract-Transform-Load 
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Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to

BigDAWG Common Interface/API 

Visualizations Applications 

Cast	 Cast	

SQL	 NoSQL	 NewSQL	Rela,onal	
DB	

Array	
DB	

…		
DB	

Clients 

Relational Island Array Island Island … 

Shim	Shim	 Shim	 Shim	 Shim	

Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we
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Prototype BigDAWG Overhead 
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•  Goal: Find patients with similar ECG  
time-series*  

•  Procedure 
–  Perform Discrete Wavelet Transform  

of ECG  
–  Generate wavelet coefficient histogram 
–  TF-IDF waveform coefficients (weight  

rare changes higher) 
–  Correlate against all other ECGs 

 

BigDAWG Polystore Analytic Example 
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1000s of Patient 
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Input Output 

* A novel method for the efficient retrieval of similar multiparameter physiologic time  
series using wavelet-based symbolic representations, Saeed & Mark, AMIA 2006 

TF-IDF=Term Frequency-Inverse  
Document Frequency 
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•  Goal: Find patients with similar ECG  
time-series*  

•  Procedure 
–  Perform Discrete Wavelet Transform  

of ECG  
–  Generate wavelet coefficient histogram 
–  TF-IDF waveform coefficients (weight  

rare changes higher) 
–  Correlate against all other ECGs 

 

BigDAWG Polystore Analytic Example 

•  Show timings for individual pieces in 
two different types of databases 

–  Option 1: Everything in a single system 
 

–  Option 2: Polystore application 
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Polystore Analytic Performance 
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•  Introduction and Background 

•  BigDAWG 

–  What it is 

–  BigDAWG Initial Results 

–  BigDAWG in Action: Ocean Genomics 

–  S-Store Streaming Engine 

•  Summary and Future Work 

Outline 

BigDAWG = Big Data Working Group 
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•  The Chisholm Lab (MIT) has been collecting seawater 
samples from the across the globe for many years 
–  Currently a number of challenges that are faced by 

researchers. 
•  Contents: 

–  Genome Sequence Data 
•  For every individual sample, we quality controlled, trimmed and (sometimes) 

paired sequence data. Each sample contains many different DNA sequence 
reads from a particular sample corresponding to different DNA samples.  

–  Discrete sample metadata 
•  Recording of nearly 500 different entities for water samples (ocean 

chemistry) 

–  Sensor Metadata 
•  Information about recordings, where they took place 

–  Cruise Reports 
•  Free form text reports written as cruise logs 

–  Streaming Data 
•  Data collected from SeaFlow* system.  

Ocean Genomic Data 

 
Fig. 1.   Map describing all of the sets of archived samples at our disposal.  Samples cover a 
diverse range of ocean sites, each with unique features (see Table 1).  Color code is shown 
below.  All but the transect shown in black (AMT) also have samples on which we can do single 
call genome analysis.  We include here all of the samples we have in our freezers, but only 
selected ones will be processed. 
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Cast	 Cast	Cast	
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BigDAWG Common Interface/API
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• Historical	Streaming	Data	

• Genomic	Sequences	 •  Cruise	Reports	
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BigDAWG Ocean Genomics Architecture 

Ocean Metagenomic Analysis: CIDR’17 (to appear) 
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Ocean Genomics Polystore Applications 

Exploration 

Navigation 

Geo-Analytics 

Genomic Processing 

Heavy Analytics 

Performance Modeling 

(see the entire dataset) 

(make cruises more efficient) 

(leverage the unstructured data) 

(look for interesting trends in genomic data) 

(cut across data set for deep analytics) 

(see how well the system performs) 

Ocean Metagenomic Analysis: CIDR’17 (to appear) 
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•  Introduction and Background 

•  BigDAWG 

–  What it is 

–  BigDAWG Initial Results 

–  BigDAWG in Action: Ocean Genomics 

–  S-Store Streaming Engine 

•  Summary and Future Work 

Outline 

BigDAWG = Big Data Working Group 
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•  Allow you to query data from a stream (rather than batching results and loading them 
into a traditional DB for querying) 
–  Examples: Stock prices, kinematic data from autonomous vehicles, network data,… 

Streaming Databases 

Thanks to Nesime Tatbul (Intel/MIT), Stan Zdonik and John Meehan (Brown) for lending me their slides 
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•  Allow you to query data from a stream (rather than batching results and loading them 
into a traditional DB for querying) 
–  Examples: Stock prices, kinematic data from autonomous vehicles, network data,… 

•  Requires rethinking traditional systems: 

Streaming Databases 

Traditional systems Streaming Systems 
State Management Data Driven Processing 

Pull operations Push operations 

Full queries Partial Queries (transaction may not 
complete) 

Multiple Passes Single Pass 

Higher latency (larger batch sizes) Low Latency (small batch sizes) 

Goal: Develop next generation streaming engines to support stream transaction processing 
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Traditional vs. Streaming Databases 

TRADITIONAL 
DATABASES 

STREAMING  
DATABASES 

J. Meehan et al. S-Store: Streaming Meets Transaction Processing. PVLDB, 8(13), 2015. 
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S-Store: OLTP + Streaming Databases 

OLTP 
DATABASES 

STREAMING  
DATABASES -Store

J. Meehan et al. S-Store: Streaming Meets Transaction Processing. PVLDB, 8(13), 2015. 
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S-Store Features 

ARCHITECTURE 
extends H-Store NewSQL system 

TRANSACTION MODEL 
extends ACID to include streaming 

PERFORMANCE COMPARISON 
to state-of-the-art streaming systems* 

APPLICATIONS 
support wide spectrum of workloads 

J. Meehan et al. S-Store: Streaming Meets Transaction Processing. PVLDB, 8(13), 2015. 

*for workloads that include shared mutable 
state + streaming 
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S-Store Architecture 

N. Tatbul et al. Handling Shared, Mutable State in Stream Processing with Correctness Guarantees. 
IEEE Data Engineering Bulletin 2015. 
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S-Store and BigDAWG 

•  S-Store is the only engine that (currently) lives under two different islands. 
•  Streaming island 

•  captures common basic primitives of streaming in general 
•  supports streaming and ETL operations 

•  Applications: 
•  Applied to medical and oceanographic data 

J. Meehan et al. Integrating Real-Time and Batch Processing in a Polystore. IEEE HPEC 2016 BigDAWG Architecture: CIDR’17 
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Goal: To provide real-time navigation support for ships collecting water samples 

Demonstration: 
S-Store + BigDAWG for Ocean Genomics 
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•  S-Store bridges the gap between traditional OLTP databases and streaming databases 
to provide high performance query processing with strong transactional guarantees 

•  For more information: 
–  Nesime Tatbul: tatbul@csail.mit.edu 
–  John Meehan: john@cs.brown.edu 
–  Stan Zdonik: sbz@cs.brown.edu 

S-Store Summary 
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•  Introduction and Background 

•  BigDAWG 

–  What it is 

–  BigDAWG Initial Results 

–  BigDAWG in Action: Ocean Genomics 

–  S-Store Streaming Engine 

•  Summary and Future Work 

Outline 

BigDAWG = Big Data Working Group 
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Inaugural Workshop on Polystore Databases 
Important Dates 
 
October 10, 2016:  
Full workshop papers 
submission deadline 
 
November 1, 2016:  
Notification of paper 
acceptance to authors  
 
November 15, 2016:  
Camera-ready of accepted 
papers  
 
December 5-8, 2016: 
Workshops Dates 
 
Website:  
https://goo.gl/oLFR1F 
 
Contact:  
Vijay Gadepally 
(vijayg@mit.edu)  

Research topics included in workshop: 
 
• New Computational Models for Big Data 
• Languages/Models for integrating disparate data such as graphs, arrays, relations 
• Query evaluation and optimization in federated or polystore systems 
• High Performance/Parallel Computing Platforms for Big Data 
• Integration of HPC and Big Data platforms 
• Data Acquisition, Integration, Cleaning, and Best Practices 
• Complex Big Data Applications in Science, Engineering, Medicine, Healthcare, 
Finance, Business, Transportation, Retailing, Telecommunication, Government 
and Defense applications 

• Efficient data movement and scheduling, failures and recovery for analytics 

Keynotes 

Fatma Ozcan 

Luna Dong 

Workshop to Manage Heterogenous Big Data 
 
co-located with IEEE Big Data Conference 

 @Washington DC 
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•  Polystore architecture shows great promise to make impossible problem a bit easier 
•  We’ve applied the BigDAWG reference implementation to a number of data sets 
•  Leverages Big Data and HPC resources 
•  Promising performance, but lots do to! 

•  Many areas for future work! 
–  Query optimization 
–  Smarter query planning 
–  More DBMSs 
–  Better islands 
–  … 
–  ... 
–  ... 

Summary 
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