
Dr. Vijay Gadepally
vijayg@ll.mit.edu

October 2016

BigDAWG: Managing Heterogenous Data
and Streaming

With contributions from: Jeremy Kepner (MIT), Albert Reuther (MIT), Nesime Tatbul (intel/MIT), Mike Stonebraker (MIT), Stan Zdonik (Brown)

Slide - 2

Acknowledgements

Arvind

Jiang

Tim K.

Stan
Miguel

Andrew
Helga

Shrainik

Aaron

Sid

Jack
Justin

Jeff H.

Sam
Cansu

John

Mike
Not Pictured:
Leilani, Dylan, Jennie, Adam, Dave, Steve,
Paul, Sara, Kristin, Jeff P., Arsen, Jeremy and
many others

Alex

Al

Slide - 3

•  Introduction and Background

•  BigDAWG

–  What it is

–  BigDAWG Initial Results

–  BigDAWG in Action: Ocean Genomics

–  S-Store Streaming Engine

•  Summary and Future Work

Outline

BigDAWG = Big Data Working Group

Slide - 4

DoD Big Data

AUV = Autonomous Underwater Vehicle
EA = Electronic Attack
EW =Electronic Warfare,

D
EN

SE
 D

AT
A D

EN
SE D

ATA

Carrier Group
Advanced
Destroyers

IR Sensor

EW Receiver
SIGINT EO

Sensor
RF Sensor

Space-
based
Radar

EA/EW

AUV
Submarine

Compact
Systems

SPARSE DATA
Data

Intensive
Cloud Thin

Clients

Wireless
Devices Local

Servers

Utility
Cloud

Slide - 5

DoD Big Data
- Hundreds of Stovepiped Databases -

AUV = Autonomous Underwater Vehicle

D
EN

SE
 D

AT
A D

EN
SE D

ATA

Carrier Group

IR Sensor

EW Receiver
SIGINT

RF Sensor

Space-
based
Radar

EA/EW

AUV
Submarine

Compact
Systems

SPARSE DATA
Data

Intensive
Cloud Thin

Clients

Wireless
Devices Local

Servers

Utility
Cloud

Sensor Report Databases

Thousands of human generated reports

Sensor Data Databases

 Millions of sensors with 100s of updates/sec

EO
Sensor

Sensors Metadata Databases

Mode, time, and position of each sensor update Advanced
Destroyers

Slide - 6

Fast Analytics Multiple Databases

Common Processing Architecture

W
eb Service Layer

Scalable Computing Infrastructure

Government Database Challenges
•  Sustaining rapid database ingest
•  Fast database analytics
•  Querying multiple diverse databases

LLSuperCloud: Sharing HPC Systems for Diverse Rapid Prototyping,
Reuther et al, IEEE HPEC 2013

Users

Operators

Analysts

Rapid Ingest
Multi-INT Data

Sources

C2 HUMINT

Weather

Space Cyber

OSINT

<html> A
C

D E

B

OSINT=Open Source Intelligence
HUMINT=Human Intelligence

Slide - 7

Modern Database Paradigm Shifts

NoSQL

Relational Databases (SQL) 2006

NewSQL

1970

Information Retrieval P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. CODD
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external representation
are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, a normal
form for data base relations, and the concept of a universal
data sublanguage are introduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user’s model.

KEY WORDS AND PHRASES: data bank, data base, data structure, data
organization, hierarchies of data, networks of data, relations, derivability,

redundancy, consistency, composition, join, retrieval language, predicate
calculus, security, data integrity

CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29

1. Relational Model and Normal Form

1 .I. INTR~xJ~TI~N
This paper is concerned with the application of ele-

mentary relation theory to systems which provide shared
access to large banks of formatted data. Except for a paper
by Childs [l], the principal application of relations to data
systems has been to deductive question-answering systems.
Levein and Maron [2] provide numerous references to work
in this area.

In contrast, the problems treated here are those of data
independence-the independence of application programs
and terminal activities from growth in data types and
changes in data representation-and certain kinds of data
inconsistency which are expected to become troublesome
even in nondeductive systems.

Volume 13 / Number 6 / June, 1970

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3,4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only-that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consistency of relations-these are discussed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking
the derivation of connections for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”).

Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
standpoint) of competing representations of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
systems to support the relational model are not discussed.

1.2. DATA DEPENDENCIES IN PRESENT SYSTEMS
The provision of data description tables in recently de-

veloped information systems represents a major advance
toward the goal of data independence [5,6,7]. Such tables
facilitate changing certain characteristics of the data repre-
sentation stored in a data bank. However, the variety of
data representation characteristics which can be changed
without logically impairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence. In some systems these
dependencies are not clearly separable from one another.

1.2.1. Ordering Dependence. Elements of data in a
data bank may be stored in a variety of ways, some involv-
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be stored in at least one total ordering which is
closely associated with the hardware-determined ordering
of addresses. For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of presentation of records
from such a file is identical to (or is a subordering of) the

Communications of the ACM 377

Relational
Model

E.F. Codd
(1970)

1980 1990 2010

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber}@google.com

Google, Inc.

Abstract
Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
implemented, and deployed a distributed storage system
for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and thousands of machines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of
servers, and store up to several hundred terabytes of data.
In manyways, Bigtable resembles a database: it shares
many implementation strategies with databases. Paral-
lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
data out of memory or from disk.
Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client API. Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section 5 describes the
fundamentals of the Bigtable implementation, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides
measurements of Bigtable’s performance. We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string

To appear in OSDI 2006 1

Google
BigTable

Chang et al
(2006)

Scalable SQL and NoSQL Data Stores
Rick Cattell

Originally published in 2010, last
revised December 2011

ABSTRACT
 In this paper, we examine a number of SQL and so-
called “NoSQL” data stores designed to scale simple
OLTP-style application loads over many servers.
Originally motivated by Web 2.0 applications, these
systems are designed to scale to thousands or millions
of users doing updates as well as reads, in contrast to
traditional DBMSs and data warehouses. We contrast
the new systems on their data model, consistency
mechanisms, storage mechanisms, durability
guarantees, availability, query support, and other
dimensions. These systems typically sacrifice some of
these dimensions, e.g. database-wide transaction
consistency, in order to achieve others, e.g. higher
availability and scalability.
Note: Bibliographic references for systems are not
listed, but URLs for more information can be found in
the System References table at the end of this paper.

Caveat: Statements in this paper are based on sources
and documentation that may not be reliable, and the
systems described are “moving targets,” so some
statements may be incorrect. Verify through other
sources before depending on information here.
Nevertheless, we hope this comprehensive survey is
useful! Check for future corrections on the author’s
web site cattell.net/datastores.
Disclosure: The author is on the technical advisory
board of Schooner Technologies and has a consulting
business advising on scalable databases.

1. OVERVIEW
In recent years a number of new systems have been
designed to provide good horizontal scalability for
simple read/write database operations distributed over
many servers. In contrast, traditional database
products have comparatively little or no ability to scale
horizontally on these applications. This paper
examines and compares the various new systems.
Many of the new systems are referred to as “NoSQL”
data stores. The definition of NoSQL, which stands
for “Not Only SQL” or “Not Relational”, is not
entirely agreed upon. For the purposes of this paper,
NoSQL systems generally have six key features:

1. the ability to horizontally scale “simple
operation” throughput over many servers,

2. the ability to replicate and to distribute (partition)
data over many servers,

3. a simple call level interface or protocol (in
contrast to a SQL binding),

4. a weaker concurrency model than the ACID
transactions of most relational (SQL) database
systems,

5. efficient use of distributed indexes and RAM for
data storage, and

6. the ability to dynamically add new attributes to
data records.

The systems differ in other ways, and in this paper we
contrast those differences. They range in functionality
from the simplest distributed hashing, as supported by
the popular memcached open source cache, to highly
scalable partitioned tables, as supported by Google’s
BigTable [1]. In fact, BigTable, memcached, and
Amazon’s Dynamo [2] provided a “proof of concept”
that inspired many of the data stores we describe here:
• Memcached demonstrated that in-memory indexes

can be highly scalable, distributing and replicating
objects over multiple nodes.

• Dynamo pioneered the idea of eventual
consistency as a way to achieve higher availability
and scalability: data fetched are not guaranteed to
be up-to-date, but updates are guaranteed to be
propagated to all nodes eventually.

• BigTable demonstrated that persistent record
storage could be scaled to thousands of nodes, a
feat that most of the other systems aspire to.

A key feature of NoSQL systems is “shared nothing”
horizontal scaling – replicating and partitioning data
over many servers. This allows them to support a large
number of simple read/write operations per second.
This simple operation load is traditionally called OLTP
(online transaction processing), but it is also common
in modern web applications
The NoSQL systems described here generally do not
provide ACID transactional properties: updates are
eventually propagated, but there are limited guarantees
on the consistency of reads. Some authors suggest a
“BASE” acronym in contrast to the “ACID” acronym:
• BASE = Basically Available, Soft state,

Eventually consistent
• ACID = Atomicity, Consistency, Isolation, and

Durability
The idea is that by giving up ACID constraints, one
can achieve much higher performance and scalability.

NewSQL
Cattell (2010)

SQL Era NoSQL Era NewSQL Era Future
Polystore, high

performance
ingest and
analytics

Fast analytics inside databases Common interface Rapid ingest for internet search

SQL = Structured Query Language
NoSQL = Not only SQL

Chapter 1

Storage and Database Management for Big

Data

1.1 Introduction

The ability to collect and analyze large amounts of data is a growing problem within the scientific

community. The growing gap between data and users calls for innovative tools that address the

challenges faced by big data volume, velocity and variety. While there has been great progress in

the world of database technologies in the past few years, there are still many fundamental consider-

ations that must be made by scientists. For example, which of the seemingly infinite technologies

are the best to use for my problem? Answers to such questions require a careful understanding of

the technology field in addition to the types of problems that are being solved. This chapter aims to

address many of the pressing questions faced by individuals interested in using storage or database

technologies to solve their big data problems.

This work is sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract #FA8721-05-C-0002.
Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Govern-
ment.

1

BigDAWG
Architecture

 IEEE HPEC
2016

Good for metadata

Good for text reports

Good for sensor data

Graphulo: IPDPS’2015

G R
 A
 P
 H
 U
 L
 O

Slide - 8

Polystore Database Challenge
-Providing a Common Mathematic Framework-

v ATvAT

à

alice

bob

alice

carl

bob

carl
cited

cited

SQL
Set Operations

NoSQL
Graph Operations

NewSQL
Linear Algebra

Associative Array Algebra Provided a Unified Mathematics for SQL, NoSQL, NewSQL

Operations in All Representations are Equivalent

A = NxM(i,j,v) (i,j,v) = A C = A ⊕ B C = A ⊗ C C = A B = A ⊕.⊗ B

from link to

001 alice cited bob
002 bob cited alice
003 alice cited carl

SELECT		
WHERE	from=alice	

Associative Arrays: HPEC’16a

Slide - 9

• Data comes in all shapes and sizes
–  Unstructured data
–  Relational data
–  Images
–  Time series

The World of Big Data

Why force all data to fit into a single data store?

Leave data in the storage engine that matches the data …. A
concept we call Polystore

Slide - 10

Exemplary Problems

MIMIC II test dataset*
•  >3 terabytes (TB) total
•  1000s of intensive care unit

patients from 2001-08

* Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-
access intensive care unit database, Saeed, et al., Crit Care Med. 2011

S-PI Overview Screen

Physiological Signals
Electrocardiogram (ECG)

traces, arterial blood
pressure monitoring,

pulse oximeter readings

Freeform Text Data
Caregiver (doctor/nurse)

notes and test reports

Structured Data
Demographic

information, lab test
results, hospital

accounting records

SQL NoSQL NewSQL

Ocean Genomics
•  Very large (multiple TB)
•  Contains mix of different types

of data from collected from
1000s of readings of ocean
water samples

Dataset	Contents:	

1) Raw Sequence Data (largest component)

This piece of the dataset contains raw sequence data. For every individual sample, we get
two primary files with DNA sequence: one comes from the left side of each given bit of
DNA, the other file is the corresponding sequence from the right side. In FASTQ format,
each sequence is given by the following:

@<unique sequence identifier> (with a “/1” at the end for the left
sequence, a “/2” for the right sequence)
DNA sequence
+<same unique sequence identifier>
ASCII-encoded quality scores, telling how confident the sequencer is in
how ‘correct’ each base is likely to be

The full size files are usually multiple GB for each of the /1 and /2 files, with on average
~20 million unique sequences each (though this can vary). An example of a raw
sequence:

Fig. 1. Map describing all of the sets of archived samples at our disposal. Samples cover a
diverse range of ocean sites, each with unique features (see Table 1). Color code is shown
below. All but the transect shown in black (AMT) also have samples on which we can do single
call genome analysis. We include here all of the samples we have in our freezers, but only
selected ones will be processed.

Structured Data
Sensor metadata, legacy
datasets, ocean sensor

data

Reports
Field reports, analysts
reports, memos, news
articles, social media

Sequence Data
Genomic sequences

Slide - 11

•  Historically:
–  Federated Databases

•  Mapping disparate database management systems via a single federated interface
•  Characteristics: Single query language (often SQL), single data model (often relational)
•  Examples: Garlic, R, IBM DB2

–  Parallel Databases
•  A single logical database or tables divided over multiple computing elements
•  Examples: SciDB (Array model), Teradata (Relational model)

•  Currently:
–  Increasing need to support analysis of diverse data sources
–  “One size does not fit all” – no single database management system that supports high

performance on all kinds of data

•  Polystore tenets:
–  There is no single query language to rule them all
–  Complete functionality of underlying database management systems is required

The Case for Polystores

Slide - 12

1.E+00&

1.E+01&

1.E+02&

1.E+03&

1.E+04&

1.E+05&

1.E+06&

1.E+07&

1.E+08&

10x10& 100x100& 1,000x1,000& 10,000x10,000&

Ti
m
e%
ta
ke
n%
(m

ili
se
co
nd

s)
%

Problem%size%(matrix%size)%

Postgres%

SciDB%

Count and Find Operations
•  SQL database (PostgreSQL) better for some

operations than Array database (SciDB)

One Size Does Not Fit All
-Quantified for Common DB Operations-

Matrix Multiplication Operations

Matrix Multiplication
•  Array database (SciDB) faster than a

SQL database (PostgreSQL)

10

100

1000

10000

100000

Ti
m

e
Ta

ke
n

(m
ill

is
ec

on
ds

)

Number of Database Entries

PostGRES - Count Entries
SciDB - Count Entries
PostGRES - Discrete Entries
SciDB - Discrete Entries

Typical DB Operations

Better

Worse

103 104 105 106 107

BigDAWG Architecture: VLDB’15, HPEC’16b

Slide - 13

•  Introduction and Background

•  BigDAWG

–  What it is

–  BigDAWG Initial Results

–  BigDAWG in Action: Ocean Genomics

–  S-Store Streaming Engine

•  Summary and Future Work

Outline

BigDAWG = Big Data Working Group

Slide - 14

•  Data Analytics & Processing Platforms
–  New platforms for storing and processing “big data”

•  Scalable Math and Algorithms
–  Implementing parallel algorithms that scale to petabytes on thousands of machines

•  Visualization
–  Presenting very large, high rate data sets

•  Hardware architecture
–  Exploiting new advances in hardware

•  Integration Across Multiple Data Processing Systems
•  Benchmarks & Testbeds – Medical data, Oceanographic Data

Our Approach: BigDAWG (the Big Data Working Group)

BigDAWG is a large scale project meant to change the way we interact with very large datasets

Slide - 15

Goal: A single interface for ALL data

BigDAWG Polystore Reference Architecture

10	

100	

1000	

10000	

100000	

1000	 10000	 100000	 1000000	 10000000	

Ti
m
e	
Ta
ke
n	
(m

ill
is
ec
on

ds
)	

Number	of	Database	Entries	

Time	taken	for	opera9ons	in	SciDB	and	PostGRES	

PostGRES	-	Count	Entries	

SciDB	-	Count	Entries	

PostGRES	-	Discrete	Entries	

SciDB	-	Discrete	Entries	

Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to

BigDAWG Common Interface/API

Visualizations Applications

Cast	 Cast	

SQL	 NoSQL	 NewSQL	Rela,onal	
DB	

Array	
DB	

…		
DB	

Clients

Relational Island Array Island Island …

Shim	Shim	 Shim	 Shim	 Shim	

Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

Slide - 16

•  Focus on solutions rather than technology

•  Goal
–  Polystore reference architecture
–  Support:

•  High performance ingest and analytics
•  Points along the location transparency vs.

semantic completeness spectrum

•  Foundational Operations
–  BigDAWG Common interface (interface)
–  Common analytic translators (shim)
–  Common data translators (cast)
–  Multiple database support via islands

BigDAWG Overview

10	

100	

1000	

10000	

100000	

1000	 10000	 100000	 1000000	 10000000	

Ti
m
e	
Ta
ke
n	
(m

ill
is
ec
on

ds
)	

Number	of	Database	Entries	

Time	taken	for	opera9ons	in	SciDB	and	PostGRES	

PostGRES	-	Count	Entries	

SciDB	-	Count	Entries	

PostGRES	-	Discrete	Entries	

SciDB	-	Discrete	Entries	

Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to

BigDAWG Common Interface/API

Visualizations Applications

Cast	 Cast	

SQL	 NoSQL	 NewSQL	Rela,onal	
DB	

Array	
DB	

…		
DB	

Clients

Relational Island Array Island Island …

Shim	Shim	 Shim	 Shim	 Shim	

Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

BigDAWG Architecture: VLDB’15, HPEC’16b

Slide - 17

•  BigDAWG Middleware
–  Optimizer
–  Monitor
–  Executor
–  Migrator

BigDAWG Middleware

Middleware Architecture

10	

100	

1000	

10000	

100000	

1000	 10000	 100000	 1000000	 10000000	

Ti
m
e	
Ta
ke
n	
(m

ill
is
ec
on

ds
)	

Number	of	Database	Entries	

Time	taken	for	opera9ons	in	SciDB	and	PostGRES	

PostGRES	-	Count	Entries	

SciDB	-	Count	Entries	

PostGRES	-	Discrete	Entries	

SciDB	-	Discrete	Entries	

Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to

BigDAWG Common Interface/API

Visualizations Applications

Cast	 Cast	

SQL	 NoSQL	 NewSQL	Rela,onal	
DB	

Array	
DB	

…		
DB	

Clients

Relational Island Array Island Island …

Shim	Shim	 Shim	 Shim	 Shim	

Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

Middleware Details: HPEC’16c,HPEC’16d

Slide - 18

BigDAWG Middleware

0	

1	

2	

3	

4	

5	

6	

7	

Query	1	 Query	2	 Query	3	 Query	4	 Query	5	 Query	6	 Query	7	 Query	8	 Query	9	 Query	10	

Ra
#
o	

Ra#o	Between	Query	Tree	Run#mes	

Base	 Predicate	order	 Similar	constant	 Skewed	constant	 Table	

Monitor

•  Responsible for determining the
best execution strategy for a given
query that is received

•  Determines similarity with previous
queries to determine best path

•  Output query plan is sent to
executor and migrator

Migrator

•  Responsible for moving data
between engines or nodes as
needed

•  May be explicit (user defined) or
implicit (based on query plan)

•  Interacts with monitor and executor
modules

Executor

•  Responsible for physical execution
of query plan and recording results
that are shared with monitor module

•  Makes use of migrator as needed to
complete execution

0

5

10

15

20

25

30

35

40

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

Sc
an

Sa
m

pl
e

0 0.5 1 1.5 2

Q
ue

ry
 D

ur
at

io
n

(M
in

s)

Zipfian Alpha

union
comparison
colocation
assignment
examination

Early stages of optimizer

Slide - 19

•  Islands are the trade-off between
functionality and location transparency

•  Islands have
–  A Data Model
–  A Language or Set of Operators
–  A Set of Candidate Database Engines

Semantic Islands as the Tradeoff

10	

100	

1000	

10000	

100000	

1000	 10000	 100000	 1000000	 10000000	

Ti
m
e	
Ta
ke
n	
(m

ill
is
ec
on

ds
)	

Number	of	Database	Entries	

Time	taken	for	opera9ons	in	SciDB	and	PostGRES	

PostGRES	-	Count	Entries	

SciDB	-	Count	Entries	

PostGRES	-	Discrete	Entries	

SciDB	-	Discrete	Entries	

Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to

BigDAWG Common Interface/API

Visualizations Applications

Cast	 Cast	

SQL	 NoSQL	 NewSQL	Rela,onal	
DB	

Array	
DB	

…		
DB	

Clients

Relational Island Array Island Island …

Shim	Shim	 Shim	 Shim	 Shim	

Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

*  Islands do Intersection of engines
*  BigDAWG does Union of Islands
*  Islands are logical
*  Also, degenerate islands for functionality

User specifies the Island
RELATIONAL(select avg(temp) from device)

ARRAY(multiply(A,B))

Details: HPEC’15

Slide - 20

Key BigDAWG Operations
-Cast and Shim Operations-

Shim Operation Example
(find number of non-zero entries)

nnz(T1) à SELECT COUNT(*) FROM T1
nnz(T2) à aggregate(T2, count(val));
nnz(T3) à scan –t T3 --np

Details: HPEC’15

•  Shim: Translates queries to native database language from island speak

10	

100	

1000	

10000	

100000	

1000	 10000	 100000	 1000000	 10000000	

Ti
m
e	
Ta
ke
n	
(m

ill
is
ec
on

ds
)	

Number	of	Database	Entries	

Time	taken	for	opera9ons	in	SciDB	and	PostGRES	

PostGRES	-	Count	Entries	

SciDB	-	Count	Entries	

PostGRES	-	Discrete	Entries	

SciDB	-	Discrete	Entries	

Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to

BigDAWG Common Interface/API

Visualizations Applications

Cast	 Cast	

SQL	 NoSQL	 NewSQL	Rela,onal	
DB	

Array	
DB	

…		
DB	

Clients

Relational Island Array Island Island …

Shim	Shim	 Shim	 Shim	 Shim	

Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

Slide - 21

Key BigDAWG Operations
-Cast and Shim Operations-

•  Cast: Translates data between database engines (or islands)

Cast Operation Example
(move data from one DB to another)

CAST nnz(T1) à ArrayDB
CAST nnz(T3) à ArrayDB

10	

100	

1000	

10000	

100000	

1000	 10000	 100000	 1000000	 10000000	

Ti
m
e	
Ta
ke
n	
(m

ill
is
ec
on

ds
)	

Number	of	Database	Entries	

Time	taken	for	opera9ons	in	SciDB	and	PostGRES	

PostGRES	-	Count	Entries	

SciDB	-	Count	Entries	

PostGRES	-	Discrete	Entries	

SciDB	-	Discrete	Entries	

Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to

BigDAWG Common Interface/API

Visualizations Applications

Cast	 Cast	

SQL	 NoSQL	 NewSQL	Rela,onal	
DB	

Array	
DB	

…		
DB	

Clients

Relational Island Array Island Island …

Shim	Shim	 Shim	 Shim	 Shim	

Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

Details: HPEC’15

Slide - 22

•  Introduction and Background

•  BigDAWG

–  What it is

–  BigDAWG Initial Results

–  BigDAWG in Action: Ocean Genomics

–  S-Store Streaming Engine

•  Summary and Future Work

Outline

Slide - 23

•  Support for 5 DB engines
•  Island support

–  Support for islands based on arrays,
relational, iteration and streaming

–  Support for degenerate islands (full
semantic completeness at the cost of
location transparency

•  Cast operations based on
associative arrays

•  Developed a number of “apps” that can
only be done via Polystore for medical
and ocean genomics

BigDAWG Prototype Implementation

10	

100	

1000	

10000	

100000	

1000	 10000	 100000	 1000000	 10000000	

Ti
m
e	
Ta
ke
n	
(m

ill
is
ec
on

ds
)	

Number	of	Database	Entries	

Time	taken	for	opera9ons	in	SciDB	and	PostGRES	

PostGRES	-	Count	Entries	

SciDB	-	Count	Entries	

PostGRES	-	Discrete	Entries	

SciDB	-	Discrete	Entries	

Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to

BigDAWG Common Interface/API

Visualizations Applications

Cast	 Cast	

SQL	 NoSQL	 NewSQL	Rela,onal	
DB	

Array	
DB	

…		
DB	

Clients

Relational Island Array Island Island …

Shim	Shim	 Shim	 Shim	 Shim	

Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

Slide - 24

BigDAWG Prototype Implementation

Islands
•  D4M (Associative Arrays)
•  Myria (Iteration)
•  Streams
•  Degenerate Islands

DB Engines

Applications
•  Data Exploration
•  Data Visualization
•  Deep Analytics
•  Streaming Analytics
•  Extract-Transform-Load

10	

100	

1000	

10000	

100000	

1000	 10000	 100000	 1000000	 10000000	

Ti
m
e	
Ta
ke
n	
(m

ill
is
ec
on

ds
)	

Number	of	Database	Entries	

Time	taken	for	opera9ons	in	SciDB	and	PostGRES	

PostGRES	-	Count	Entries	

SciDB	-	Count	Entries	

PostGRES	-	Discrete	Entries	

SciDB	-	Discrete	Entries	

Fig. 1: Time taken for various database operations in dif-
ference database engines. The dashed lines correspond to a
count operation in SciDB and PostGRES and the solid lines
correspond finding the number of discrete entries in SciDB
and PostGRES. For the count operation, SciDB outperforms
PostGRES whereas PostGRES outperforms SciDB for finding
the number of discrete entries.

of replication, partitioning and horizontally scaled hardware.
Many of the federated database technologies concentrated on
relational data. With the influx of different data sources such as
text, imagery, and video, such relational data models may not
support high performance ingest and query for these new data
modalities. Further, supporting the types of analytics that users
wish to perform (for example, a combination of convolution of
time series data, gaussian filtering of imagery, topic modeling
of text,etc.) is difficult within a single programming or data
model.

Consider the simple performance curve of Figure 1 which
describes an experiment where we performed two basic oper-
ations – counting the number of entries and extracting discrete
entries – on a varying number of elements. As shown in the
figure, for counting the number of entries, SciDB outperforms
PostGRES by nearly an order of magnitude. We see the
relative performance reversed in the case of extracting discrete
entries.

Many time-series, image or video storage systems are most
efficient when using an array data model [10] which provides
a natural organization and representation of data. Analytics on
these data are often developed using linear algebraic operations
such as matrix multiplication. In a simple experiment in which
we performed matrix multiplication in PostGRES and SciDB,
we observed nearly three orders of magnitude difference in
performance time (for a 1000 ⇥ 1000 dense matrix multi-
plication, PostGRES takes approximately 166 minutes vs. 5
seconds in SciDB).

These results suggest that analytics in which one wishes to
perform a combination of operations (for example, extracting
the discrete entries in a dataset and using that result to

BigDAWG Common Interface/API

Visualizations Applications

Cast	 Cast	

SQL	 NoSQL	 NewSQL	Rela,onal	
DB	

Array	
DB	

…		
DB	

Clients

Relational Island Array Island Island …

Shim	Shim	 Shim	 Shim	 Shim	

Fig. 2: The BigDAWG polystore architecture consists of four
layers - engines, islands, middleware/API and applications.

perform a matrix multiplication operation) may benefit from
performing part of the operation in PostGRES (extracting
discrete entries) and the remaining part (matrix multiplication)
in SciDB.

Extending the concept of federated and parallel databases,
we propose a “polystore” database. Polystore databases can
harness the relative strengths of underlying DBMSs. Unlike
federated or parallel databases, polystore databases are de-
signed to simultaneously work with disparate database en-
gines and programming/data models while supporting com-
plete functionality of underlying DBMSs. In fact, a polystore
solution may include federated and/or parallel databases as
a part of the overall solution stack. In a polystore solution,
different components of an overall dataset can be stored in the
engine(s) that will best support high performance ingest, query
and analysis. For example, a dataset with structured, text and
time-series data may simultaneously leverage relational, key-
value and array databases. Incoming queries may leverage one
or more of the underlying systems based on the characteristics
of the query. For example, performing a linear algebraic op-
eration on time-series data may utilize just an array database;
performing a join between time-series data and structured data
may leverage array and relational databases respectively.

In order to support such expansive functionality, the Big-
DAWG polystore system (Figure 2) utilizes a number of fea-
tures. “Islands” provide users with a number of programming
and data model choices; “Shim” operations allow translation
of one data model to another; and “Cast” operations allow for
the migration of data from one engine or island to another.
We go into greater depth of the BigDAWG architecture in
Section III.

III. BIGDAWG ARCHITECTURE

The BigDAWG architecture consists of four distinct layers
as described in Figure 2: database and storage engines; islands;
middleware and API; and applications. In this section, we

Slide - 25

Prototype BigDAWG Overhead

0
200
400
600
800

1000
1200
1400
1600
1800
2000

 Count
(Postgres)

 Average
(Postgres)

 Average
(SciDB)

 Standard
Deviation
(SciDB)

Count

(SciDB)

 Distinct
Values
(SciDB)

Ti
m

e
Ta

ke
n

(m
se

c)

Overhead Incurred When Using BigDAWG
For Common Database Queries

Overhead Incurred (ms)

Query without BigDAWG (ms)

Minimal
Overhead

Medical Applications: HPEC’15

Slide - 26

•  Goal: Find patients with similar ECG
time-series*

•  Procedure
–  Perform Discrete Wavelet Transform

of ECG
–  Generate wavelet coefficient histogram
–  TF-IDF waveform coefficients (weight

rare changes higher)
–  Correlate against all other ECGs

BigDAWG Polystore Analytic Example

Top-K
Clusters

Signal Processing

Discrete Wavelet
Transform (DWT)

Coefficient Binning and Weighting

Frequency
Coefficient

Binning
Freq. Coefficient
Outlier Weighting

Clustering

k-Nearest
Neighbors

1000s of Patient
ECGs

Input Output

* A novel method for the efficient retrieval of similar multiparameter physiologic time
series using wavelet-based symbolic representations, Saeed & Mark, AMIA 2006

TF-IDF=Term Frequency-Inverse
Document Frequency

Slide - 27

•  Goal: Find patients with similar ECG
time-series*

•  Procedure
–  Perform Discrete Wavelet Transform

of ECG
–  Generate wavelet coefficient histogram
–  TF-IDF waveform coefficients (weight

rare changes higher)
–  Correlate against all other ECGs

BigDAWG Polystore Analytic Example

•  Show timings for individual pieces in
two different types of databases

–  Option 1: Everything in a single system

–  Option 2: Polystore application

Top-K
Clusters

Signal Processing

Discrete Wavelet
Transform (DWT)

Coefficient Binning and Weighting

Frequency
Coefficient

Binning
Freq. Coefficient
Outlier Weighting

Clustering

k-Nearest
Neighbors

1000s of Patient
ECGs

Input Output

TF-IDF=Term Frequency-Inverse
Document Frequency

* A novel method for the efficient retrieval of similar multiparameter physiologic time
series using wavelet-based symbolic representations, Saeed & Mark, AMIA 2006

Slide - 28

0 50 100 150 200 250 300

Hybrid

Myria

SciDB

Time Taken (Seconds)

Te
ch

no
lo

gy
 U

se
d

Time taken to perform analytic using different technologies

Discrete Wavelet
Transform

Term Frequency-
Inverse Document
Frequency

K-Nearest Neighbors

Polystore Analytic Performance

Better Worse

Medical Applications: HPEC’15

Slide - 29

Polystore Analytic Performance

Better Worse

0 50 100 150 200 250 300

Hybrid

Myria

SciDB

Time Taken (Seconds)

Te
ch

no
lo

gy
 U

se
d

Time taken to perform analytic using different technologies

Discrete Wavelet
Transform

Term Frequency-
Inverse Document
Frequency

K-Nearest Neighbors

Medical Applications: HPEC’15

Slide - 30

•  Introduction and Background

•  BigDAWG

–  What it is

–  BigDAWG Initial Results

–  BigDAWG in Action: Ocean Genomics

–  S-Store Streaming Engine

•  Summary and Future Work

Outline

BigDAWG = Big Data Working Group

Slide - 31

•  The Chisholm Lab (MIT) has been collecting seawater
samples from the across the globe for many years
–  Currently a number of challenges that are faced by

researchers.
•  Contents:

–  Genome Sequence Data
•  For every individual sample, we quality controlled, trimmed and (sometimes)

paired sequence data. Each sample contains many different DNA sequence
reads from a particular sample corresponding to different DNA samples.

–  Discrete sample metadata
•  Recording of nearly 500 different entities for water samples (ocean

chemistry)

–  Sensor Metadata
•  Information about recordings, where they took place

–  Cruise Reports
•  Free form text reports written as cruise logs

–  Streaming Data
•  Data collected from SeaFlow* system.

Ocean Genomic Data

Fig. 1. Map describing all of the sets of archived samples at our disposal. Samples cover a
diverse range of ocean sites, each with unique features (see Table 1). Color code is shown
below. All but the transect shown in black (AMT) also have samples on which we can do single
call genome analysis. We include here all of the samples we have in our freezers, but only
selected ones will be processed.

Slide - 32

Cast	 Cast	Cast	
PostgreSQL	 SciDB	 Accumulo	 S-Store	

BigDAWG Common Interface/API

Exploration

ScalaR/Vega

Heavy Analytics

Macrobase/Tupleware

Navigation

S-Store

Text/Geo Analytics

D4M

Engines

Shims

Islands

Middleware

Applications

Data
Example

•  Sensor	Metadata	
•  Sample	Metadata	
• Historical	Streaming	Data	

• Genomic	Sequences	 •  Cruise	Reports	
• Genomic	Sequences	 •  Streaming	Data	

Array Island Text Island S-Store
Degenerate Island Relational Island

BigDAWG Ocean Genomics Architecture

Ocean Metagenomic Analysis: CIDR’17 (to appear)

Slide - 33

Ocean Genomics Polystore Applications

Exploration

Navigation

Geo-Analytics

Genomic Processing

Heavy Analytics

Performance Modeling

(see the entire dataset)

(make cruises more efficient)

(leverage the unstructured data)

(look for interesting trends in genomic data)

(cut across data set for deep analytics)

(see how well the system performs)

Ocean Metagenomic Analysis: CIDR’17 (to appear)

Slide - 34

•  Introduction and Background

•  BigDAWG

–  What it is

–  BigDAWG Initial Results

–  BigDAWG in Action: Ocean Genomics

–  S-Store Streaming Engine

•  Summary and Future Work

Outline

BigDAWG = Big Data Working Group

Slide - 35

•  Allow you to query data from a stream (rather than batching results and loading them
into a traditional DB for querying)
–  Examples: Stock prices, kinematic data from autonomous vehicles, network data,…

Streaming Databases

Thanks to Nesime Tatbul (Intel/MIT), Stan Zdonik and John Meehan (Brown) for lending me their slides

Slide - 36

•  Allow you to query data from a stream (rather than batching results and loading them
into a traditional DB for querying)
–  Examples: Stock prices, kinematic data from autonomous vehicles, network data,…

•  Requires rethinking traditional systems:

Streaming Databases

Traditional systems Streaming Systems
State Management Data Driven Processing

Pull operations Push operations

Full queries Partial Queries (transaction may not
complete)

Multiple Passes Single Pass

Higher latency (larger batch sizes) Low Latency (small batch sizes)

Goal: Develop next generation streaming engines to support stream transaction processing

Slide - 37

Traditional vs. Streaming Databases

TRADITIONAL
DATABASES

STREAMING
DATABASES

J. Meehan et al. S-Store: Streaming Meets Transaction Processing. PVLDB, 8(13), 2015.

Slide - 38

S-Store: OLTP + Streaming Databases

OLTP
DATABASES

STREAMING
DATABASES -Store

J. Meehan et al. S-Store: Streaming Meets Transaction Processing. PVLDB, 8(13), 2015.

Slide - 39

S-Store Features

ARCHITECTURE
extends H-Store NewSQL system

TRANSACTION MODEL
extends ACID to include streaming

PERFORMANCE COMPARISON
to state-of-the-art streaming systems*

APPLICATIONS
support wide spectrum of workloads

J. Meehan et al. S-Store: Streaming Meets Transaction Processing. PVLDB, 8(13), 2015.

*for workloads that include shared mutable
state + streaming

Slide - 40

S-Store Architecture

N. Tatbul et al. Handling Shared, Mutable State in Stream Processing with Correctness Guarantees.
IEEE Data Engineering Bulletin 2015.

Slide - 41

S-Store and BigDAWG

•  S-Store is the only engine that (currently) lives under two different islands.
•  Streaming island

•  captures common basic primitives of streaming in general
•  supports streaming and ETL operations

•  Applications:
•  Applied to medical and oceanographic data

J. Meehan et al. Integrating Real-Time and Batch Processing in a Polystore. IEEE HPEC 2016 BigDAWG Architecture: CIDR’17

Slide - 42

Goal: To provide real-time navigation support for ships collecting water samples

Demonstration:
S-Store + BigDAWG for Ocean Genomics

Slide - 43

•  S-Store bridges the gap between traditional OLTP databases and streaming databases
to provide high performance query processing with strong transactional guarantees

•  For more information:
–  Nesime Tatbul: tatbul@csail.mit.edu
–  John Meehan: john@cs.brown.edu
–  Stan Zdonik: sbz@cs.brown.edu

S-Store Summary

Slide - 44

•  Introduction and Background

•  BigDAWG

–  What it is

–  BigDAWG Initial Results

–  BigDAWG in Action: Ocean Genomics

–  S-Store Streaming Engine

•  Summary and Future Work

Outline

BigDAWG = Big Data Working Group

Slide - 45

Inaugural Workshop on Polystore Databases
Important Dates

October 10, 2016:
Full workshop papers
submission deadline

November 1, 2016:
Notification of paper
acceptance to authors

November 15, 2016:
Camera-ready of accepted
papers

December 5-8, 2016:
Workshops Dates

Website:
https://goo.gl/oLFR1F

Contact:
Vijay Gadepally
(vijayg@mit.edu)

Research topics included in workshop:

• New Computational Models for Big Data
• Languages/Models for integrating disparate data such as graphs, arrays, relations
• Query evaluation and optimization in federated or polystore systems
• High Performance/Parallel Computing Platforms for Big Data
• Integration of HPC and Big Data platforms
• Data Acquisition, Integration, Cleaning, and Best Practices
• Complex Big Data Applications in Science, Engineering, Medicine, Healthcare,
Finance, Business, Transportation, Retailing, Telecommunication, Government
and Defense applications

• Efficient data movement and scheduling, failures and recovery for analytics

Keynotes

Fatma Ozcan

Luna Dong

Workshop to Manage Heterogenous Big Data

co-located with IEEE Big Data Conference

 @Washington DC

Slide - 46

•  Polystore architecture shows great promise to make impossible problem a bit easier
•  We’ve applied the BigDAWG reference implementation to a number of data sets
•  Leverages Big Data and HPC resources
•  Promising performance, but lots do to!

•  Many areas for future work!
–  Query optimization
–  Smarter query planning
–  More DBMSs
–  Better islands
–  …
–  ...
–  ...

Summary

Slide - 47

ISTC Team
•  Michael Stonebraker

•  Brandon Haynes
•  Sam Madden
•  Peinan Chen

•  Magdalena Balazinska
•  Tim Mattson

•  Adam Dziedzic
•  Aaron Elmore

•  Jennie Duggan
•  Nesime Tatbul

•  John Meehan
•  Stand Zdonik

Acknowledgements

MIT Lincoln Laboratory
•  Jeremy Kepner

•  Albert Reuther
•  Lauren Milechin
•  Dylan Hutchison

•  Braden Hancock
•  David Martinez

•  Roger Khazan
•  Siddharth Samsi

LLSC Team
•  Bill Arcand

•  Bill Bergeron
•  David Bestor
•  Chansup Byun

•  Matt Hubbell
•  Mike Jones

•  Pete Michaleas
•  Julie Mullen

•  Andy Prout
•  Tony Rosa

•  Charles Yee

Slide - 48

[CIDR’17] “Demonstrating the BigDAWG Polystore System for Ocean Metegenomic Analysis,” Tim Mattson, Vijay Gadepally,
Zuohao She, Adam Dziedzic, Jeff Parkhurst, Conference on Innovations on Data Research (CIDR), 2017 (to appear).

[HPEC’16a] "Associative Array Model of SQL, NoSQL, and NewSQL Databases", Jeremy Kepner, Vijay Gadepally (MIT), Dylan
Hutchison (University of Washington), Hayden Jananthan (MIT), Timothy Mattson (Intel), Siddharth Samsi, Albert Reuther
(MIT), IEEE High Performance Extreme Computing (HPEC), 2016.

[HPEC’16b] "The BigDAWG Polystore System and Architecture", Vijay Gadepally, Peinan Chen (MIT), Jennie Duggan
(Northwestern University), Aaron Elmore (University of Chicago), Brandon Haynes (University of Washington), Jeremy Kepner,
Samuel Madden (MIT), Tim Mattson (Intel), Michael Stonebraker (MIT), IEEE High Performance Extreme Computing (HPEC),
2016.

[HPEC’16c] “The BigDawg Monitoring Framework", Peinan Chen, Vijay Gadepally, Michael Stonebraker, IEEE High
Performance Extreme Computing (HPEC), 2016.

[HPEC’16d] "Cross-Engine Query Execution in Federated Database Systems", Ankush M. Gupta, Vijay Gadepally, Michael
Stonebraker, IEEE High Performance Extreme Computing (HPEC), 2016.

[VLDB’15] "A Demonstration of the BigDawg Polystore System", Aaron Elmore, Jennie Duggan, Michael Stonebraker, Magda
Balazinska, Ugur Cetintemel, Vijay Gadepally, Jeff Heer, Bill Howe, Jeremy Kepner, Tim Kraska, et al., Proceedings of the
VLDB Endowment, 2015

[HPEC’15] "D4M: Bringing Associative Arrays to Database Engines", Vijay Gadepally, Jeremy Kepner, William Arcand, David
Bestor, Bill Bergeron, Chansup Byun, Lauren Edwards, Matthew Hubbell, Peter Michaleas, Julie Mullen, Andrew Prout, Antonio
Rosa, Charles Yee, Albert Reuther, IEEE High Performance Extreme Computing Conference (HPEC), 2015.

[IPDPS’15] "Graphulo: A Graph Library for NoSQL Databases", Vijay Gadepally et al., IEEE International Parallel and
Distributed Processing Symposium (IPDPS) GABB, 2015.

Recent BigDAWG Publications

