WASHINGTON STATE UNIVERSITY

About

- Distributed-memory graph applications exhibit irregular communication patterns, challenging to parallelize
- distributed-memory implementations of • We study Community Detection (using Louvain method) and Maximum Weight Matching (half approximate method)
- Partition a graph into *clusters* (or *communities*) such that each cluster consists of vertices that are densely connected within the cluster and sparsely connected to the rest of the graph
- A *matching* in a graph is a subset of edges such that no two "matched" edges are incident on the same vertex

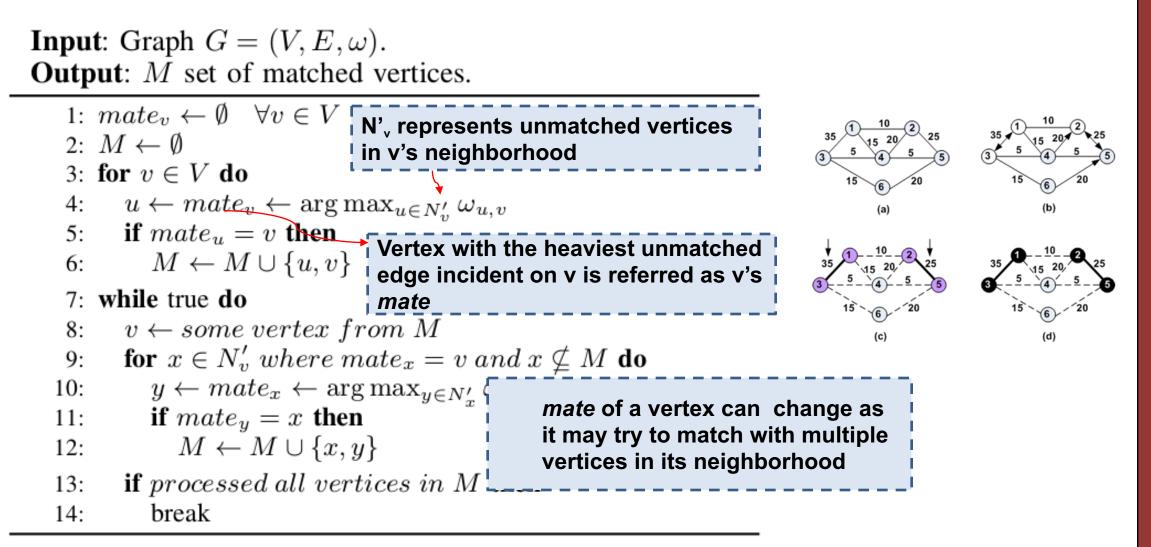
Louvain method for graph clustering

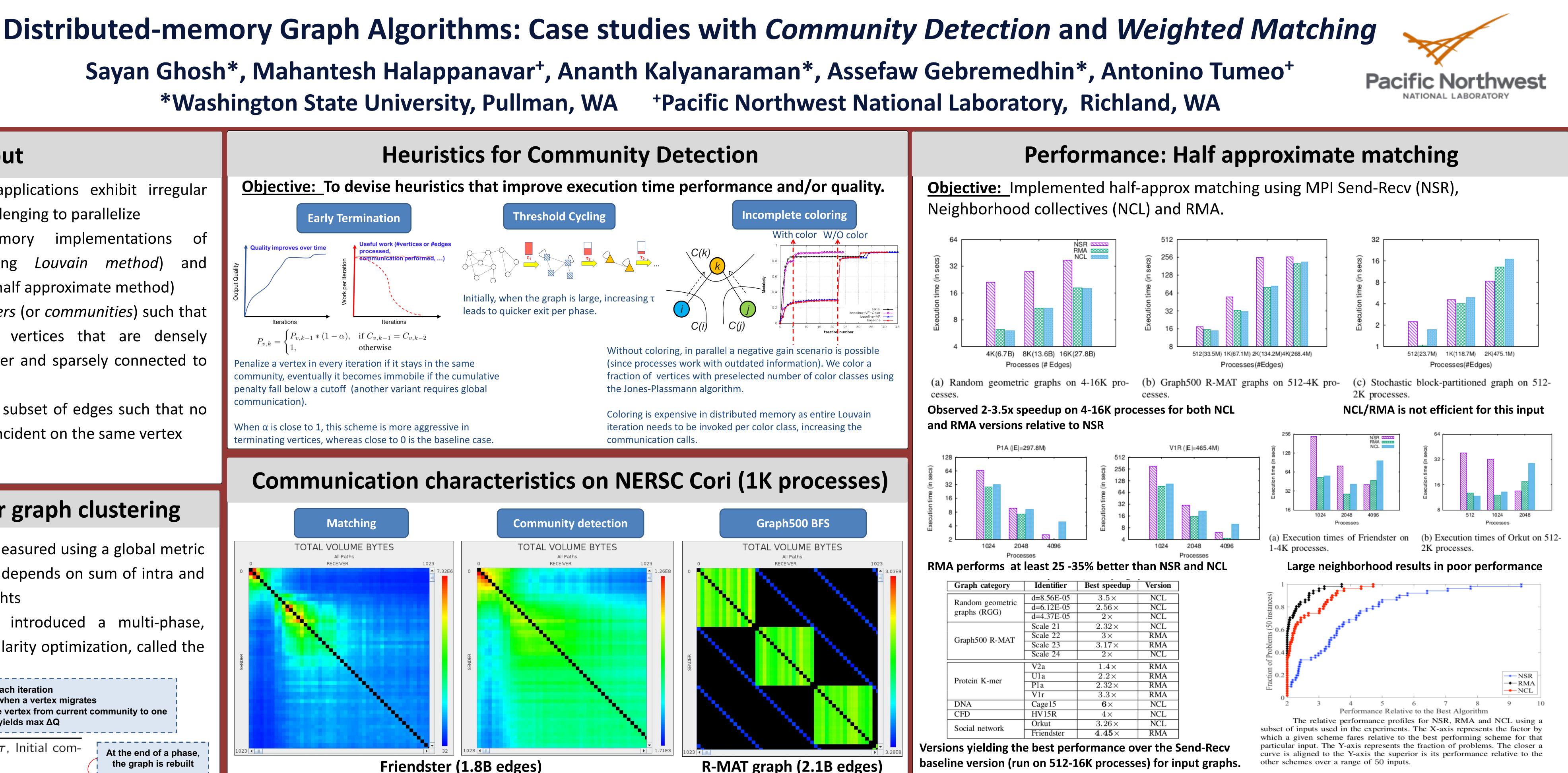
- Goodness of partitioning measured using a global metric called *modularity* (Q), that depends on sum of intra and inter community edge weights
- 2008, Blondel, et al. introduced a multi-phase, iterative heuristic for modularity optimization, called the Louvain method ______,

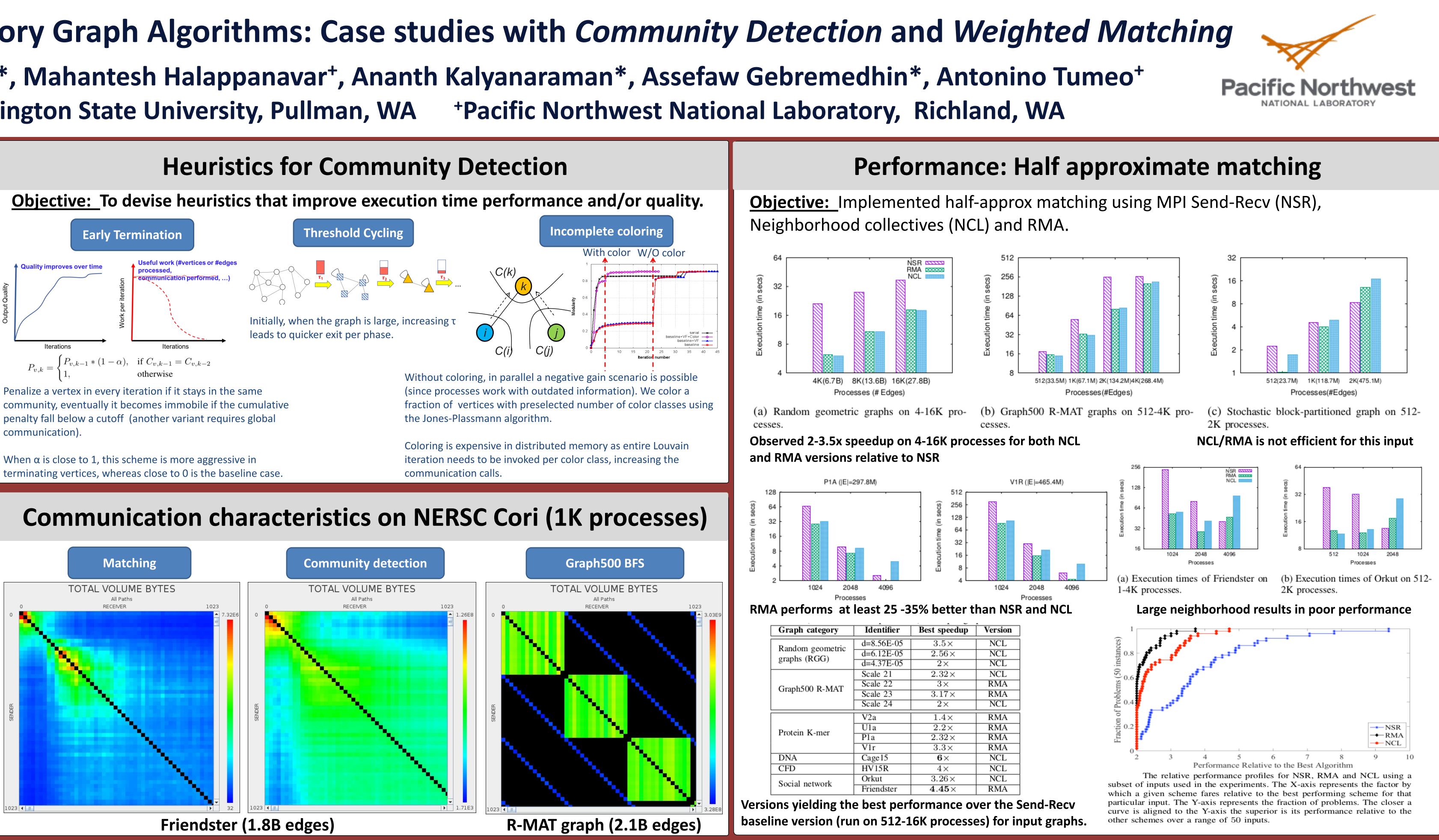
 Within each iteration ΔQ when a vertex migrates Move vertex from current community to one to a separate community 					
Input : Graph $G = (V, E)$, threshold τ , Initial com- munity assignment, C_{init} At the end of a phase, the graph is rebuilt					
1: $Q_{prev} \leftarrow -\infty$ 2: $C_{prev} \leftarrow$ Initialize each vertex in its own community 3: while true do 4: for all $v \in V$ do 5: $N(v) \leftarrow$ neighboring communities of v 6: $targetComm \leftarrow$ arg max $_{t \in N_{V}} \Delta Q(v \text{ moving to } t)$ 7: if $\Delta Q > 0$ then 8: Move v to $targetComm$ and update C_{curr} 9: $Q_{curr} \leftarrow ComputeModularity(V, E, C_{curr})$ 10: if $Q_{curr} - Q_{prev} \leq \tau$ then 11: break 12: else 13: $Q_{prev} \leftarrow Q_{curr}$ Phase continues until ΔQ between successive iterations is below a threshold					

Maximum weight matching

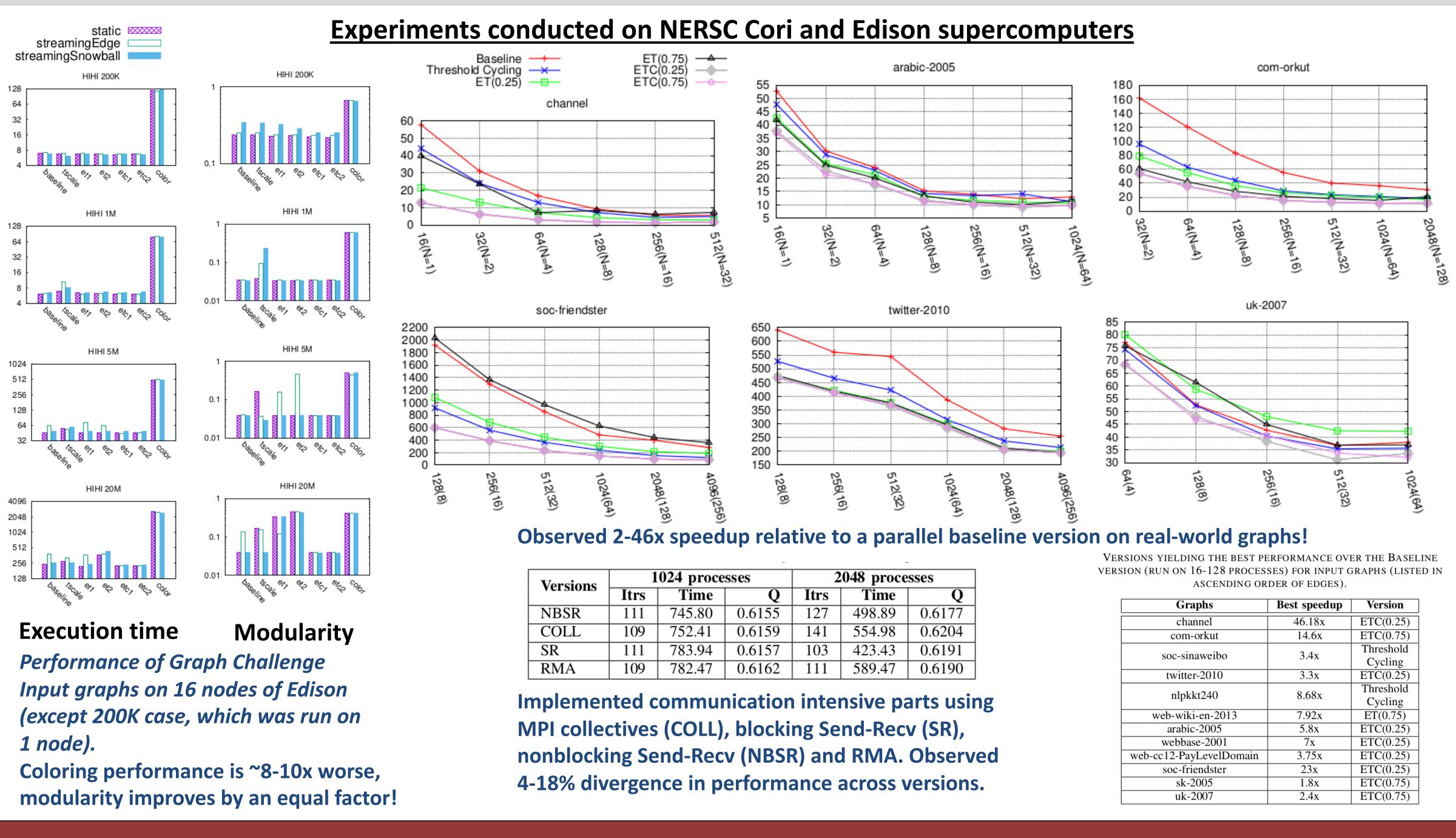
- In the first phase, the initial set of locally dominant edges are identified and added to matching set M
- Next phase is iterative, for each vertex in M, its unmatched neighboring vertices are matched







Performance: Community Detection



Energy/Memory for matching on Cori

			-	-	-		
Ver.	Mem.	Node	Node	Comp.	MPI	EDP	
	(MB/proc.)	eng. (kJ)	pwr. (kW)	%	%	EDF	
Friendster (1.8B edges)							
NSR	977.7	2868.04	10.7	61.6	38.4	8.29E+08	
RMA	577.4	793.27	9.78	21.4	78.6	1.35E+08	
NCL	419.3	740.13	9.65	20.8	79.1	1.27E+08	
Stochastic block partition graph (475.1M edges)							
NSR	154.8	485.80	8.18	57.5	42.5	2.88E+07	
RMA	196.3	690.41	9.09	7.2	92.8	5.24E+07	
NCL	149	593.90	8.82	7.2	92.7	4.00E+07	
HV15R (283.07M edges)							
NSR	210.2	154.98	5.95	13.5	86.4	4.04E+06	
RMA	116.8	163.97	6.32	4.6	95.3	4.25E+06	
NCL	106.9	140.85	6.07	3.2	96.7	3.27E+06	

• Average memory consumption for NCL is the least, ~1.03 – 2.3x less than NSR, ~9–27% less than RMA

• Overall node energy consumption of NSR is about 4x to that of NCL and RMA for Friendster

References

- S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu, D. Chavarrià-Miranda, A. Khan, A. Gebremedhin "Distributed Louvain Algorithm for Graph Community Detection", 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
- S. Ghosh, M. Halappanavar, A. Kalyanaraman, A. Tumeo, A. Gebremedhin, "miniVite: A Graph Analytics Benchmarking Tool for Massively Parallel Systems" 2019 Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)
- S. Ghosh, M. Halappanavar, A. Kalyanaraman, A. Khan, A. Gebremedhin, "Exploring MPI Communication Models for Graph Applications Using Graph Matching as a Case Study" [under review]

Acknowledgements

The research is in part supported by the U.S. DOE ExaGraph project, a collaborative effort of U.S. DOE SC and NNSA at DOE PNNL.