
• Distributed-memory graph applications exhibit irregular
communication patterns, challenging to parallelize

• We study distributed-memory implementations of
Community Detection (using Louvain method) and
MaximumWeight Matching (half approximate method)
• Partition a graph into clusters (or communities) such that

each cluster consists of vertices that are densely
connected within the cluster and sparsely connected to
the rest of the graph

• A matching in a graph is a subset of edges such that no
two “matched” edges are incident on the same vertex

Distributed-memory	Graph	Algorithms:	Case	studies	with	Community	Detection	and	Weighted	Matching
Sayan	Ghosh*,	Mahantesh	Halappanavar+,	Ananth	Kalyanaraman*,	Assefaw	Gebremedhin*,	Antonino	Tumeo+

*Washington	State	University,	Pullman,	WA						+Pacific	Northwest	National	Laboratory,		Richland,	WA

About

Acknowledgements

Objective:	 To	devise	heuristics	that	improve	execution	time	performance	and/or	quality.	

• Goodness of partitioning measured using a global metric
called modularity (Q), that depends on sum of intra and
inter community edge weights

• In 2008, Blondel, et al. introduced a multi-phase,
iterative heuristic for modularity optimization, called the
Louvain method

Louvain	method	for	graph	clustering

Contig Generation
Experiments	conducted	on	NERSC	Cori	and	Edison	supercomputers

Performance:	Community	Detection

The	research	is	in	part	supported	by	the	U.S.	DOE	ExaGraph	project,	
a	collaborative	effort	of	U.S.	DOE	SC	and	NNSA	at	DOE	PNNL.

• S.	Ghosh,	M.	Halappanavar,	A.	Tumeo,	A.	Kalyanaraman,	H.	Lu,	D.	Chavarrià-
Miranda,	A.	Khan,	A.	Gebremedhin	"Distributed	Louvain	Algorithm	for	Graph	
Community	Detection“, 2018	IEEE	International	Parallel	and	Distributed	
Processing	Symposium	(IPDPS)

• S.	Ghosh,	M.	Halappanavar,	A.	Kalyanaraman,	A.	Tumeo,	A.	Gebremedhin,	
“miniVite:	A	Graph	Analytics	Benchmarking	Tool	for	Massively	Parallel	Systems”,		
2019		Performance	Modeling,	Benchmarking	and	Simulation	of	High	
Performance	Computer	Systems	(PMBS)

• S.	Ghosh,	M.	Halappanavar,	A.	Kalyanaraman,	A.	Khan,	A.	Gebremedhin,	
“Exploring	MPI	Communication	Models	for	Graph	Applications	Using	Graph	
Matching	as	a	Case	Study”	[under	review]

References

Heuristics	for	Community	Detection
Objective:		Implemented	half-approx	matching	using	MPI	Send-Recv	(NSR),	
Neighborhood	collectives	(NCL)	and	RMA.

Observed	2-3.5x	speedup	on	4-16K	processes	for	both	NCL																																						NCL/RMA	is	not	efficient	for	this	input
and	RMA	versions	relative	to	NSR

RMA	performs		at	least	25	-35%	better	than	NSR	and	NCL																					Large	neighborhood	results	in	poor	performance	

Performance:	Half	approximate	matching

Energy/Memory	for	matching	on	Cori

Within each iteration
• ΔQ when a vertex migrates
• Move vertex from current community to one

that yields max ΔQ

At the end of a phase,
the graph is rebuilt

Phase continues until ΔQ
between successive iterations
is below a threshold

Initially each vertex assigned
to a separate community

• In the first phase, the initial set of locally dominant edges
are identified and added to matching set M

• Next phase is iterative, for each vertex in M, its
unmatched neighboring vertices are matched

N’v represents unmatched vertices
in v’s neighborhood

Vertex with the heaviest unmatched
edge incident on v is referred as v’s
mate

mate of a vertex can change as
it may try to match with multiple
vertices in its neighborhood

i j

k
C(k)

C(i) C(j)

Penalize	a	vertex	in	every	iteration	if	it	stays	in	the	same	
community,	eventually	it	becomes	immobile	if	the	cumulative	
penalty	fall	below	a	cutoff		(another	variant	requires	global
communication).	

When	α is	close	to	1,	this	scheme	is	more	aggressive	in	
terminating	vertices,	whereas	close	to	0	is	the	baseline	case.

Without	coloring,	in	parallel	a	negative	gain	scenario	is	possible
(since	processes	work	with	outdated	information).	We	color	a	
fraction	of		vertices	with	preselected	number	of	color	classes	using	
the	Jones-Plassmann algorithm.	

Coloring	is	expensive	in	distributed	memory	as	entire	Louvain	
iteration	needs	to	be	invoked	per	color	class,	increasing	the	
communication	calls.

Initially,	when	the	graph	is	large,	increasing	τ
leads	to	quicker	exit	per	phase.		

Early	Termination Threshold	Cycling Incomplete	coloring

Communication	characteristics	on	NERSC	Cori	(1K	processes)
Matching Community	detection Graph500	BFS

Friendster	(1.8B	edges) R-MAT	graph	(2.1B	edges)

Execution	time Modularity
Performance	of	Graph	Challenge
Input	graphs	on	16	nodes	of	Edison
(except	200K	case,	which	was	run	on
1	node).
Coloring	performance	is	~8-10x	worse,
modularity	improves	by	an	equal	factor!	

Observed	2-46x	speedup	relative	to	a	parallel	baseline	version	on	real-world	graphs!

Implemented	communication	intensive	parts	using
MPI	collectives	(COLL),	blocking	Send-Recv	(SR),	
nonblocking	Send-Recv	(NBSR)	and	RMA.	Observed
4-18%	divergence	in	performance	across	versions.

Versions	yielding	the	best	performance	over	the	Send-Recv
baseline	version	(run	on	512-16K	processes)	for	input	graphs.

• Average	memory	consumption	for	NCL	is	the	least,	
~1.03	−	2.3x	less	than	NSR,	~9−27%	less	than	RMA
• Overall	node	energy	consumption	of	NSR	is	about	
4x	to	that	of	NCL	and	RMA	for	Friendster

With color W/O	color

Maximum	weight	matching

