WASHINGTON STATE Distributed-memory Graph Algorithms: Case studies with Community Detection and Weighted Matching
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to a separate community that yields max AQ

munity assi ent, Ci,it :

1: Qprev < oo\

2: Cprev < Initialize each

In 1ts own community

3: while true do

4: forall v € V do

5: N(v) < neighboring communities of v

0: targetComm <« arg max;¢p,, AQ(v moving to t)

(. if AQ > 0 then

3: Move v to targetComm and update Ccyrr

9. Qcurr + ComputeModularity(V, E, Ccurr)

]-O: if Qcurr — Qprev <Tthen _ _ _ _ _ _ _ .
11: break ' Phase continues until AQ :
12 else between successive iterations |
13: Qprev < Qcurr : — - |_s_b_e I_o!v_a _th_re_s_h (_)Ifl _______ :

* |n the first phase, the initial set of locally dominant edges
are identified and added to matching set M
* Next phase is iterative, for each vertex in M,

unmatched neighboring vertices are matched

Input: Graph G = (V, E,w).
Output° M set of matched vertices.

s matey, — 0 YveVr

* Distributed-memory graph applications exhibit irregular
communication patterns, challenging to parallelize

* We study distributed-memory implementations
Community Detection (using Louvain method)

Output Quality

Maximum Weight Matching (half approximate method)

e Partition a graph into clusters (or communities) such that
each cluster consists of vertices that are densely
connected within the cluster and sparsely connected to

* A matching in a graph is a subset of edges such that no
two “matched” edges are incident on the same vertex

Louvain method for graph clustering

4 Quality improves over time

Work per iteration
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Heuristics for Community Detection

Objective: To devise heuristics that improve execution time performance and/or quality.
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Penalize a vertex in every iteration if it stays in the same
community, eventually it becomes immobile if the cumulative
penalty fall below a cutoff (another variant requires global
communication).

Iterations

if C’U,k’—l — C'v,k'—‘z
otherwise

Initially, when the graph is large, increasing T
leads to quicker exit per phase.

When a is close to 1, this scheme is more aggressive in
terminating vertices, whereas close to 0 is the baseline case.
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Without coloring, in parallel a negative gair{ scenario is possible
(since processes work with outdated information). We color a

fraction of vertices with preselected number of color classes using

the Jones-Plassmann algorithm.

Coloring is expensive in distributed memory as entire Louvain
iteration needs to be invoked per color class, increasing the
communication calls.

Communication characteristics on NERSC Cori (1K processes)

Community detection

Graph500 BFS
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* Goodness of partitioning measured using a global metric
called modularity (Q), that depends on sum of intra and

* |n 2008, Blondel, et al. introduced a multi-phase,
iterative heuristic for modularity optimization, called the

|

Initially each vertex assigned | /l * Move vertex from current community to one
|
|

Input: Graph G = (V/, E), threshold 7, Initial com- [ atthe end of a phase
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the graph is rebuilt

Maximum weight matching

|
' 1 N°, represents unmatched vertices s 22,
2- M <0 ' in v’s neighborhood ! w
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4 u 4 mate, < argmaxXye N/ Wu,v
. if mate, = v thel rrmmmmn e n e e e e =

5
| Vertex with the heaviest unmatched
0 M MU {u,v} ' edge incident on v is referred as v’s | @f}
7: while true do ‘mate.
8 v < some vertexr from M

9:  for x € N, where mate, = v and x g_ M do
10: Yy < mate; <— argmaxyens {
11: if mate, = x then N

14: break

15\\ //2/0
©

mate of a vertex can change as

. ., a, I it may try to match with multiple
12: M &MU {:U y} vertices in its neighborhood
13:  if processed all vertices in M« _ - - o o e
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Input graphs on 16 nodes of Edison
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Friendster (1.8B edges)

4K(6 7B) 8K(13. SB) 16K(27 88)
Processes (# Edges)

P1A (|E|=297.8M)

(a) Random geometric graphs on 4-16K pro-
CCSSCS.
Observed 2-3.5x speedup on 4-16K processes for both NCL
and RMA versions relative to NSR
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Performance: Half approximate matching

Objective: Implemented half-approx matching using MPI Send-Recv (NSR),
Neighborhood collectives (NCL) and RMA.
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V1R (|E|=465.4M)

512(33.5M) 1K(67.1M) 2K(134 2M)4K(268.4M)
Processes(#Edges)

(b) Graph500 R-MAT graphs on 512-4K pro- (c) Stochastic block-partitioned graph on 512-

Processes

RMA performs at least 25 -35% better than NSR and NCL

Graph category Identifier Best speedup Version
Random geometric d=8.56E-05 3.5‘>< NCL
= d=6.12E-05 2.56 X NCL
graphs (RGG) =4 37E-05 T NCL
Scale 21 2.32X% NCL
Scale 22 3 X RMA
GraphS00 R-MAT |- 73 317X RMA
Scale 24 2 X NCL
V2a 1.4% RMA
Protein K-mer Ula 22 X RMA
Pla 2.32 % RMA
Vir 3.3 % RMA
DNA Cagel5 6 % NCL
CFD HVI5R 4 % NCL
Social network Or.kut 3.26 % NCL
Friendster 4.45 X RMA

R-MAT graph (2.1B edges)

Performance: Community Detection

Experiments conducted on NERSC Cori and Edison supercomputers
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(except 200K case, which was run on

1 node).

Coloring performance is ~8-10x worse,

modularity improves by an equal factor!
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Observed 2-46x speedup relative to a parallel baselme ver5|on on real-world graphs!

1024 processes 2048 processes

Versions Itrs Time Q | Itrs Time Q
NBSR 111 | 745.80 | 0.6155 | 127 | 498.89 | 0.6177
COLL 109 | 75241 | 0.6159 | 141 | 55498 | 0.6204
SR 111 | 78394 | 0.6157 | 103 | 42343 | 0.6191
RMA 109 | 78247 | 0.6162 | 111 | 58947 | 0.6190

Implemented communication intensive parts using
MPI collectives (COLL), blocking Send-Recv (SR),
nonblocking Send-Recv (NBSR) and RMA. Observed

4-18% divergence in performance across versions.

VERSIONS YIELDING THE BEST PERFORMANCE OVER THE BASELINE
VERSION (RUN ON 16-128 PROCESSES) FOR INPUT GRAPHS (LISTED IN
ASCENDING ORDER OF EDGES).

| Graphs | Best speedup | Version |
channel 46.18x ETC(0.25)
com-orkut 14.6x ETC(0.75)
soc-sinaweibo 3.4x Threshold
Cycling
twitter-2010 3.3x ETC(0.25)
nlpkk(240 8.68x 1 restold
ycling
web-wiki-en-2013 7.92x ET(0.75)
arabic-2005 5.8x ETC(0.25)
webbase-2001 7x ETC(0.25)
web-cc12-PayLevelDomain 3.75x ETC(0.25)
soc-friendster 23x ETC(0.25)
sk-2005 1.8x ETC(0.75)
uk-2007 2.4x ETC(0.75)

4096

Versions yielding the best performance over the Send-Recv
baseline version (run on 512-16K processes) for input graphs.
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2K processes.

NCL/RMA is not efficient for this input
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(a) Execution times of Friendster on  (b) Execution times of Orkut on 512-
1-4K processes. 2K processes.

Large neighborhood results in poor performance

«=NSR |
—+—RMA
*—NCL

Fraction of Problems (50 instances)

2 3 4 5 6 7 8 9 10
Performance Relative to the Best Algorithm

The relative performance profiles for NSR, RMA and NCL using a

subset of inputs used in the experiments. The X-axis represents the factor by

which a given scheme fares relative to the best performing scheme for that

particular input. The Y-axis represents the fraction of problems. The closer a

curve is aligned to the Y-axis the superior is its performance relative to the
other schemes over a range of 50 inputs.

Energy/Memory for matching on Cori

Ver.

Mem. Node Node C;)mp. MPI

(MB/proc.) | eng. (kJ) pwr. (kW) % % EDP

Friendster (1.8B edges)

NSR

971.7 2868.04 10.7 61.6 384 8.29E+08

RMA

577.4 793.27 9.78 214 78.6 1.35E+408

NCL

419.3 740.13 9.65 20.8 79.1 1.27E4+08

Stochastic block partition graph (475.1M edges)

NSR

154.8 485.80 8.18 57.5 42.5 2.88E+07

RMA

196.3 690.41 9.09 7.2 92.8 5.24E+07

NCL

149 593.90 8.82 7.2 92.7 4.00E+07

HV15R (283.07M edges)

NSR

210.2 154.98 5.95 13.5 86.4 | 4.04E+06

RMA

116.8 163.97 6.32 4.6 95.3 | 4.25E+06

NCL

106.9 140.85 6.07 3.2 96.7 3.27E+06

 Average memory consumption for NCL is the least,
~1.03 - 2.3x less than NSR, ~¥9-27% less than RMA

* Overall node energy consumption of NSR is about
4x to that of NCL and RMA for Friendster
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