

Evolving Highly-Adapted AI with Supercomputers

Travis Johnston

Collaborators:

Robert Patton, Steven Young, Catherine Schuman, Don March, Thomas Potok, Derek Rose, Seung-Hwan Lim, Thomas Karnowski, Maxim Ziatdinov, and Sergei Kalinin

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Deep Learning is Pervasive in Commercial Applications

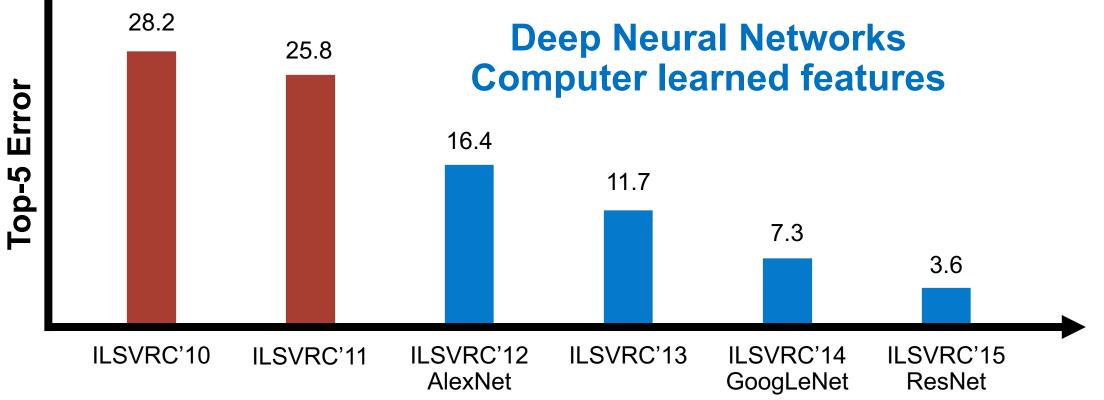
https://cs.stanford.edu/people/karpathy/cnnembed/

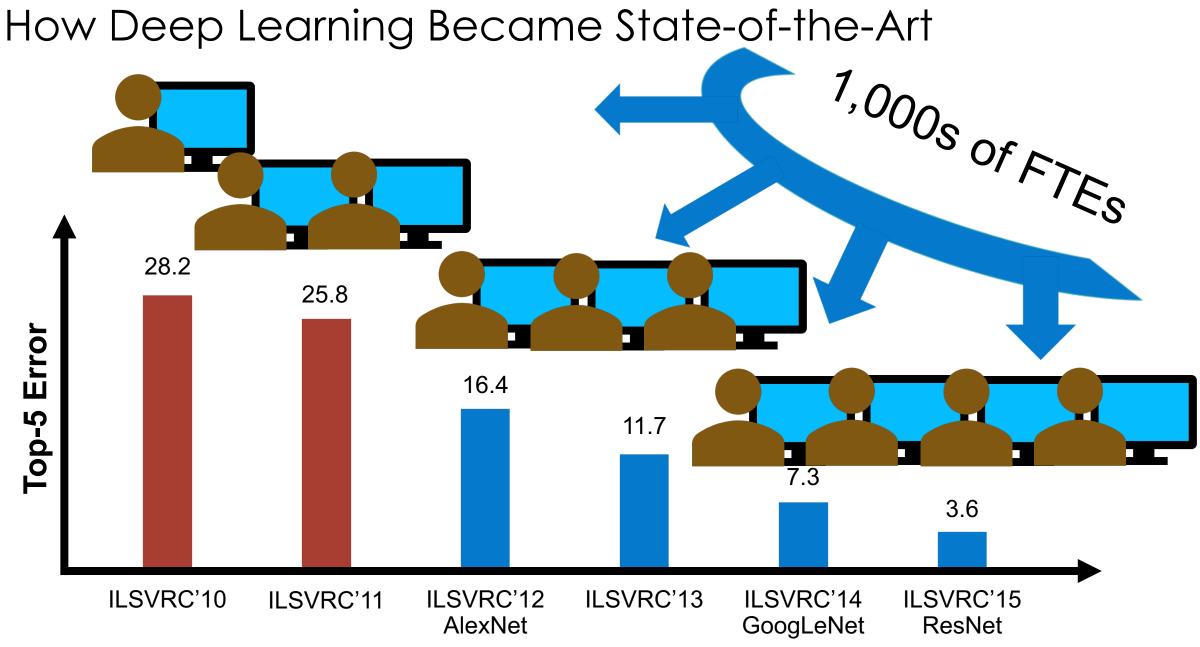
- Computer Vision
 Object Recognition
 Object Detection
 Semantic Segmentation
 Face Detection
 Facial Recognition
- Natural Language Processing Text translation
 Text generation (e.g. chat bots)
 Speech recognition

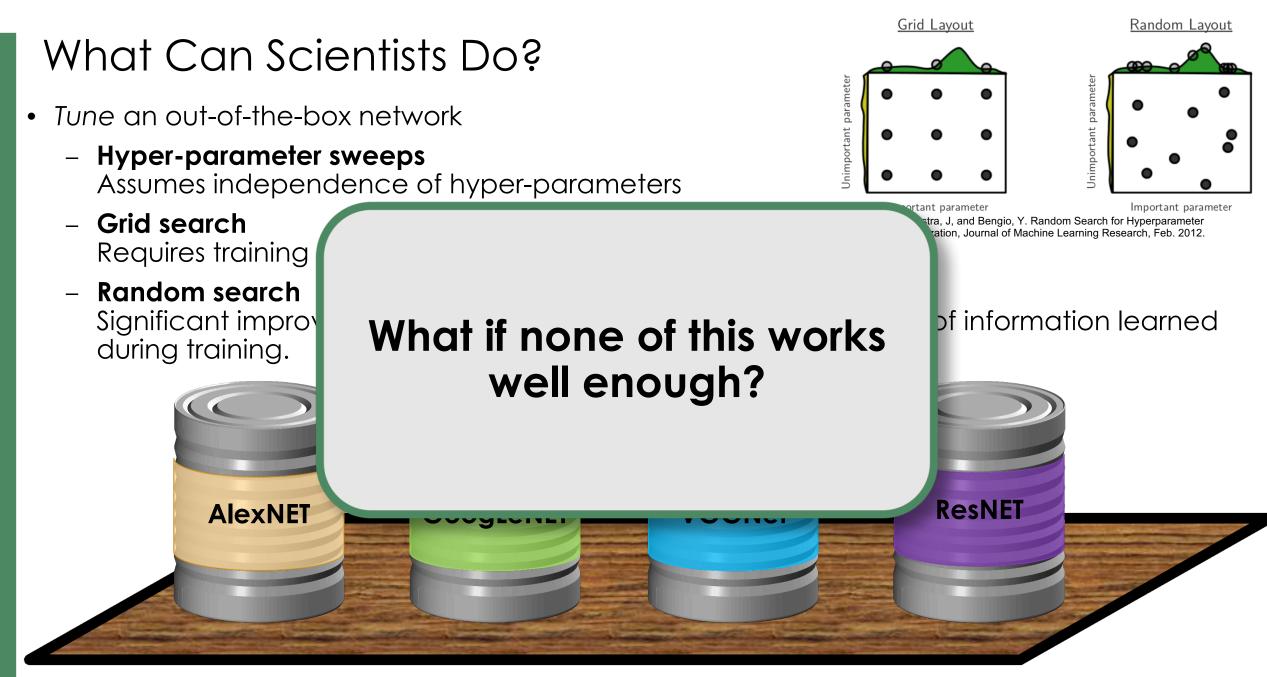
And many others...

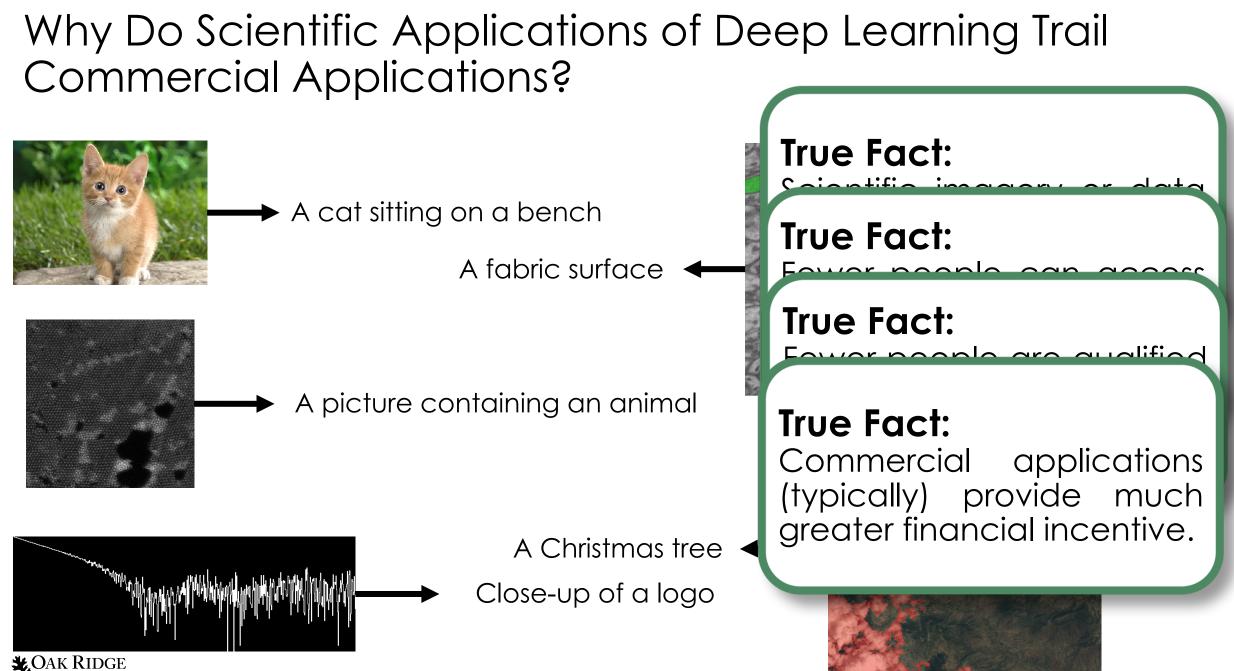
How Deep Learning Became State-of-the-Art

Hand-engineered features (pre-Deep Learning)



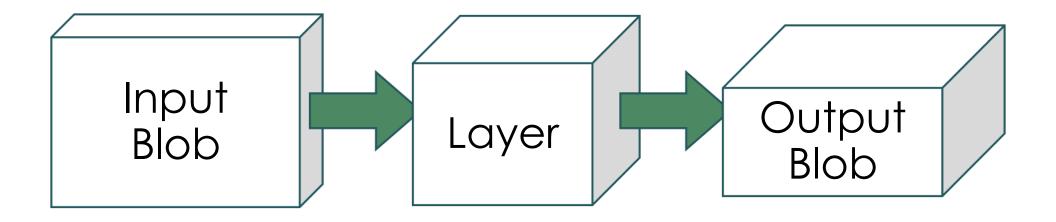






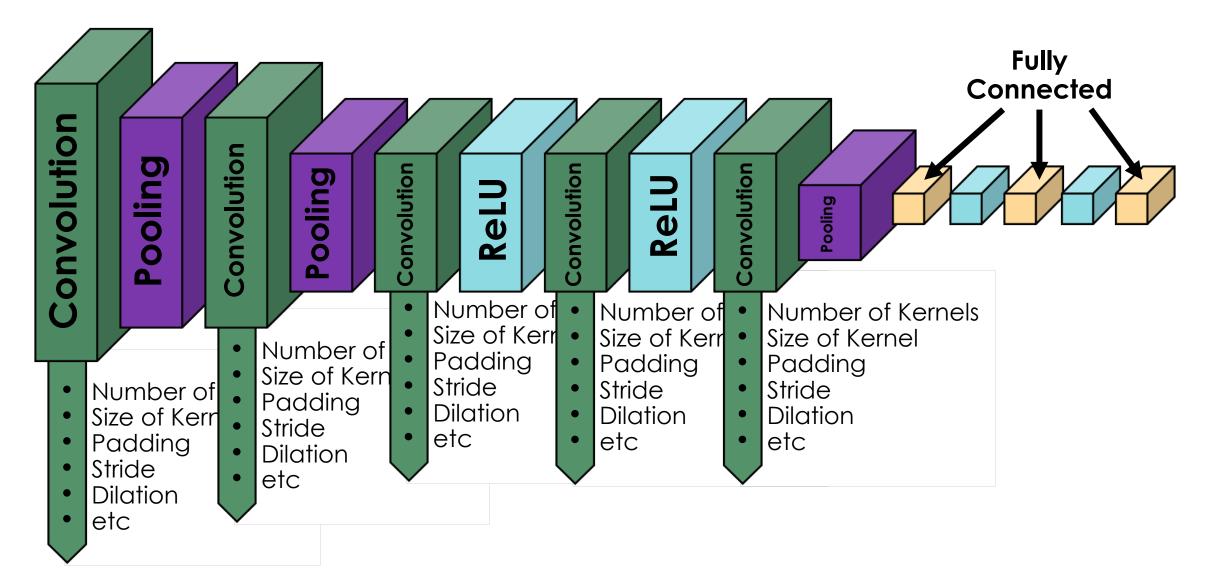
National Laboratory

Designing a Neural Network (from scratch)



Convolution	Pooling	Inner Product, or Fully Connected
Number of Kernels		Number of Neurons
Size of Kernel	Size of Kernel	
Stride	Stride	
Pad	Pad	
Dilation	Type: MAX, AVG, etc	

Designing a Neural Network (from scratch)



CAK RIDGE

MENNDL:

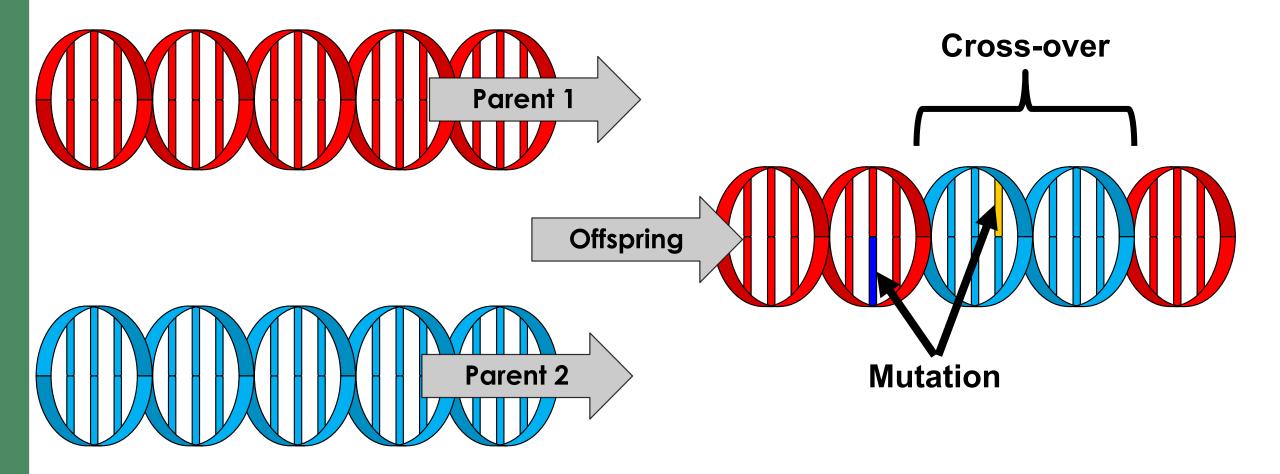
Multi-node Evolution of Neural Networks for Deep Learning

- Asynchronous, evolutionary algorithm used to explore and search hyper-parameter space for deep learning
 - Evolve only the network topology
 - Evaluate individual topologies through training process (e.g. SGD)
 - Scalable and adaptability for many data sets and compute platforms
- Leverage many GPUs
 - Titan (18,688 K20 GPUs) evaluates about 5-900,000 networks per day
 - Summit (about 27,600 Volta V100 GPUs) easily evaluating millions of networks per day

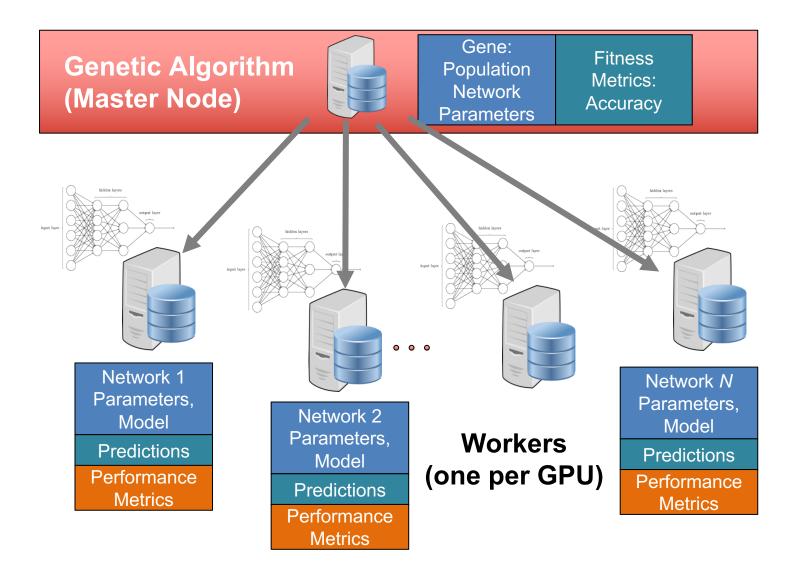
MENNDL: Multi-node Evolution of Neural Networks for Deep Learning

Fully Connected Convolution Convolution O onvolution onvolution onvolution D ooline ooling • -----**U** O 2 2 0 Bi-directional map between neural network topologies and a genetic encoding (build instructions)

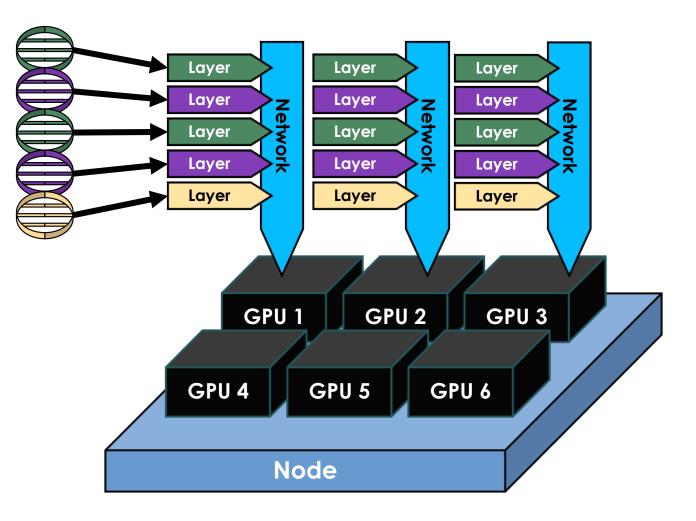
MENNDL: Evolution through Crossover and Mutation



MENNDL: Asynchronous Evaluation of Networks



Measuring the Performance of MENNDL



Measuring the Performance of MENNDL

Layer

Combinations of layer hyper-parameters affect:

- Computational cost (i.e. number of operations to transform data)
- What features may be learned

Network

Combinations of layers affect:

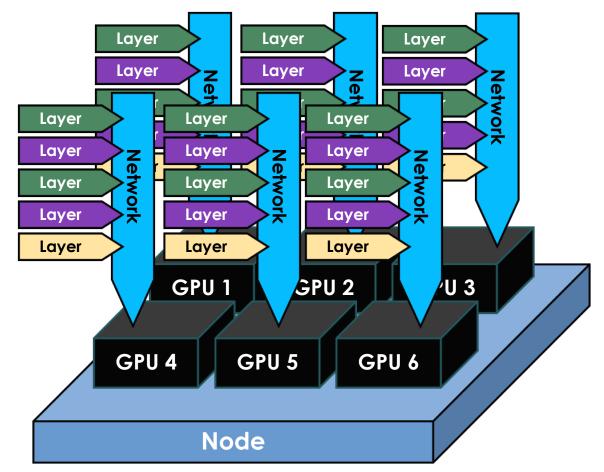
- Single-GPU computational cost (FLOPS) (i.e. number of operations to transform data)
- How features are aggregated
- Accuracy of single network

Whole System

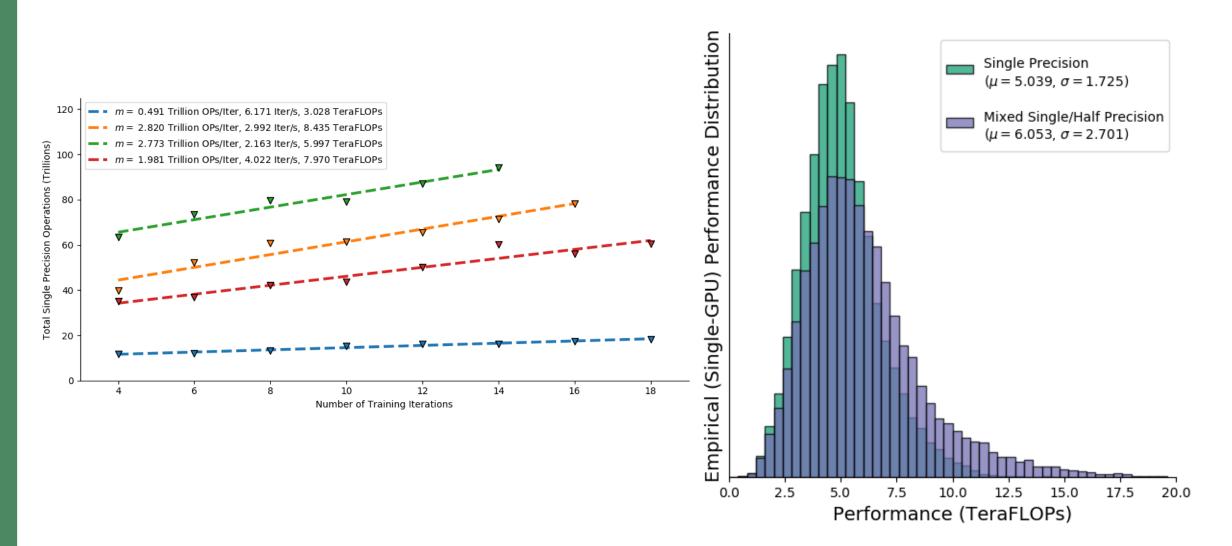
CAK RIDGE National Laboratory

Population of networks affect:

- Overall computational cost (FLOPS)
- Overall Accuracy (fittest individual, rate of convergence, etc)



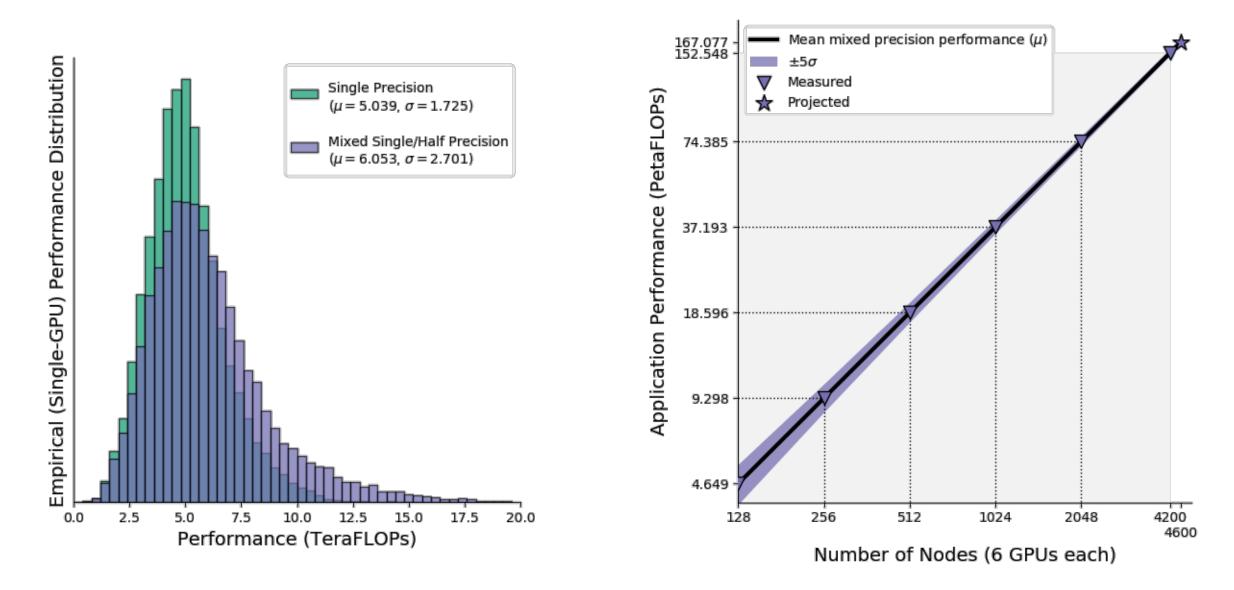
Node-Level Compute Performance (FLOPS)



System-Level Performance (FLOPS) and Scaling

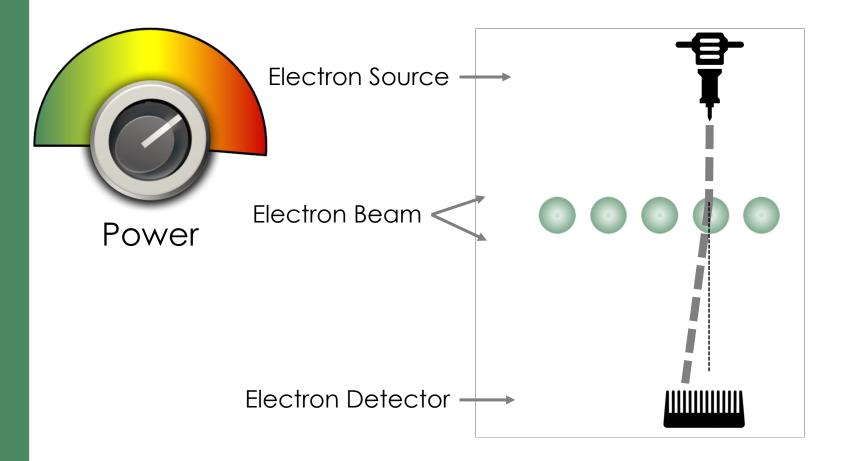
CAK RIDGE National Laboratory

16

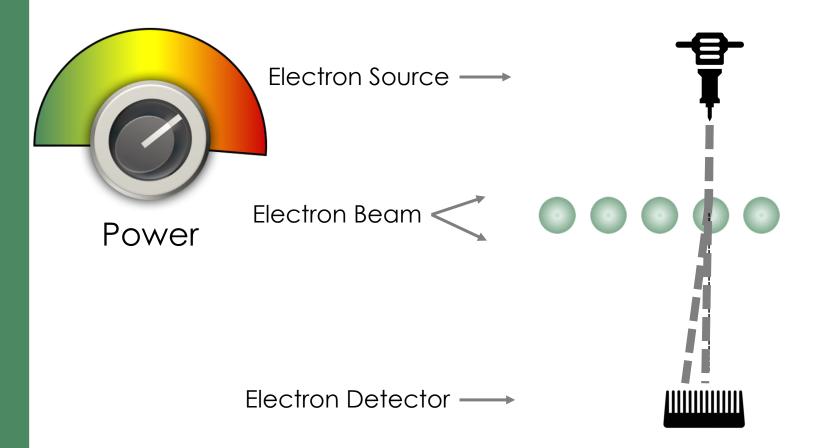


Evolving Better AI with Supercomputers

Scanning Transmission Electron Miscroscopy (STEM)

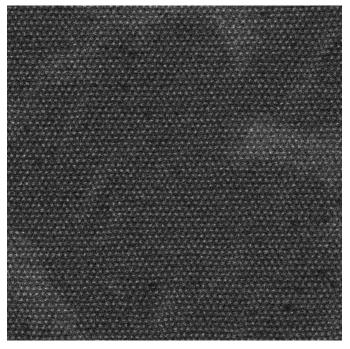


Scanning Transmission Electron Miscroscopy (STEM)

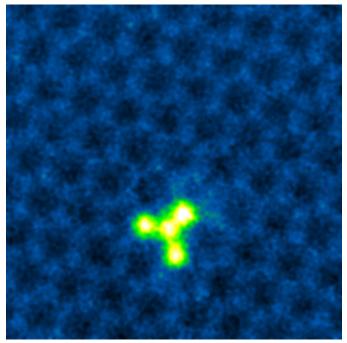


Vision: Use AI to Drive the Electron Microscope

Atomic Imaging of Materials



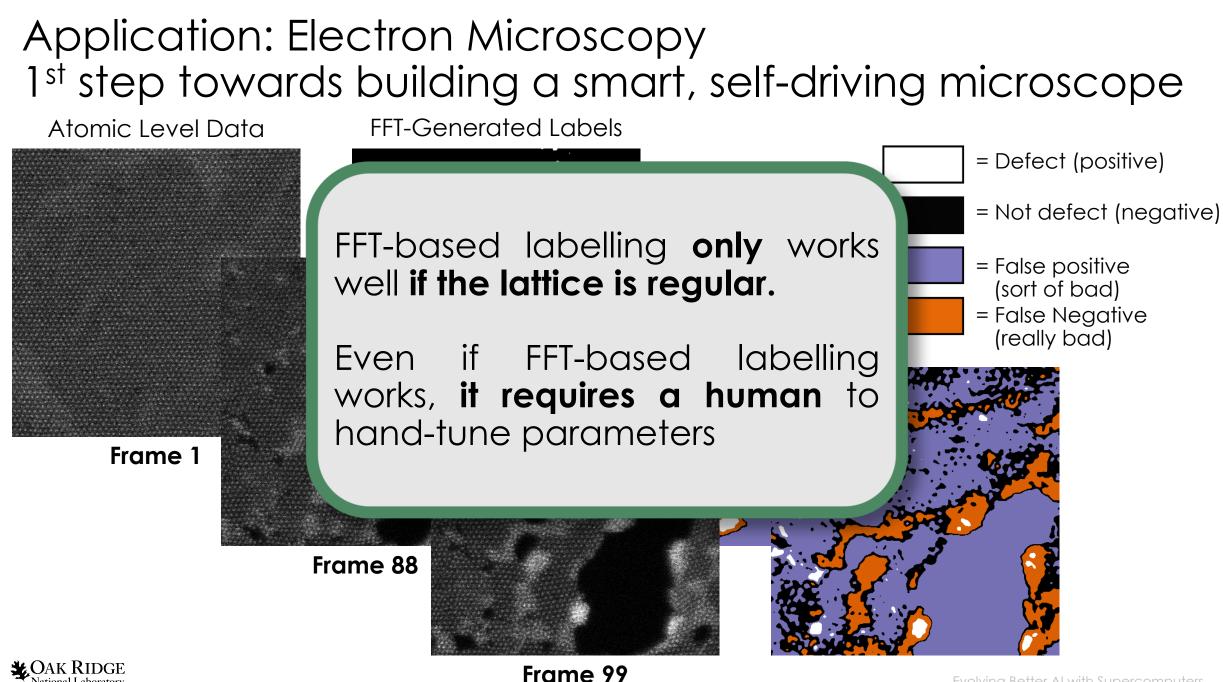
Manual Atomic Manipulation



https://www.ornl.gov/news/scientists-forge-ahead-electronmicroscopy-build-quantum-materials-atom-atom Ondrej Dyck, Sergei Kalinin, Stephen Jesse, Albina Borisevich

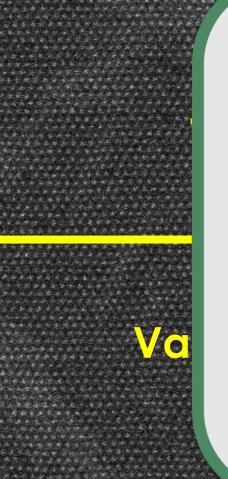
Al-Driven Atomic Manipulation

• Enable large scale production of materials customized at the atomic scale



Evolving Better AI with Supercomputers

Application: Electron Microscopy 1st step towards building a smart, self-driving microscope

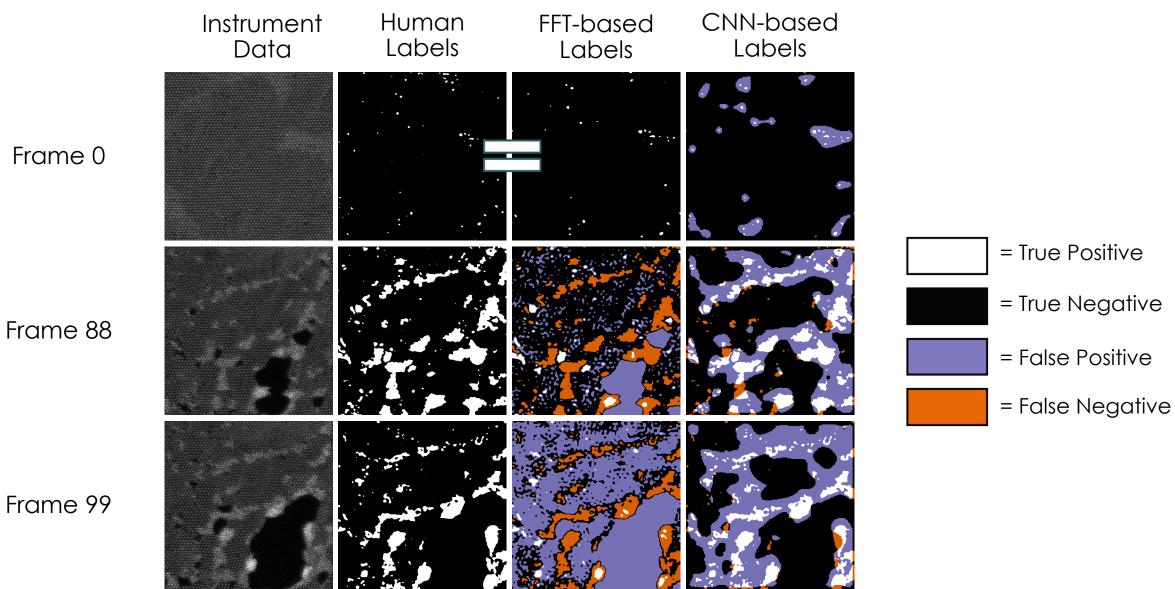


Provide data to MENNDL:

- Accuracy run 1,000 Nodes 6,000 GPUs 6 hours Train ~200,000 Networks
- Benchmarking run
 4,200 Nodes
 25,200 GPUs
 2 hours
 Profile 25,200 Networks



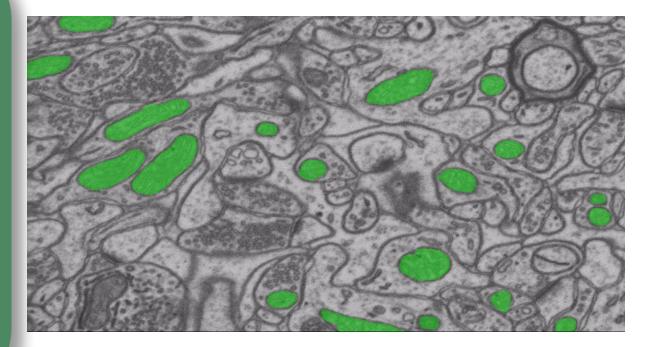
Results



Application: 3D Electron Microscopy

MENNDL:

- 24 hrs on Titan, 18,000 Nodes
- Evaluated 900,000+ networks
- 93.8% Accuracy Reduction in error of more than 30% over standard networks and human handcrafted networks

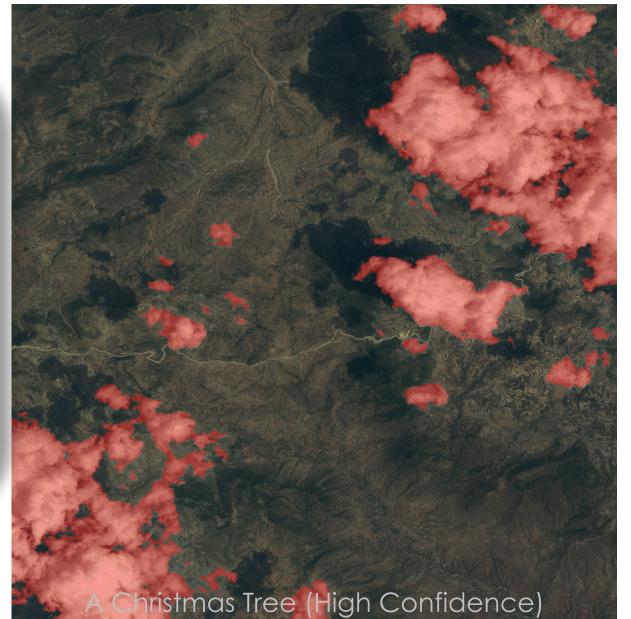


A fabric surface (High Confidence)

Application: Cloud Detection

MENNDL, smart mutation

- 5 hrs on Titan, 1,000 Nodes
- Evaluated 25,000 networks
- 97.5+% Accuracy
 200x faster inference
 - 1/10th memory
 - 40% reduction in error over GoogLeNET



Conclusion

- Deep Learning solutions for commercial data rarely transfer seamlessly to scientific data.
- MENNDL leverages a massively parallel, genetic, asynchronous algorithm on HPC systems to tailor make neural networks when commercial solutions fail.
 - Easily achieves performance over 167 Pflops on Summit
 - Evaluates around 2.5 Million neural networks per day
- MENNDL enables custom deep learning for science by removing the time-consuming hand-tuning process of creating custom neural networks.

References

• SC18 (Gordon Bell Finalist)

167-PFlops Deep Learning for Electron Microscopy: From Learning Physics to Atomic Manipulation (Wednesday 4:00-4:30)

- SC17 MLHPC Workshop (MENNDL) Steven R. Young, Derek C. Rose, Travis Johnston, William T. Heller, Thomas P. Karnowski, Thomas E. Potok, Robert M. Patton, Gabriel Perdue, and Jonathan Miller. 2017. Evolving Deep Networks Using HPC. In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 7, 7 pages. DOI: <u>https://doi.org/10.1145/3146347.3146355</u>
- SC17 MLHPC Workshop ("Smarter Mutation in MENNDL") Travis Johnston, Steven R. Young, David Hughes, Robert M. Patton, and Devin White. 2017. Optimizing Convolutional Neural Networks for Cloud Detection. In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 4, 9 pages. DOI: https://doi.org/10.1145/3146347.3146352

