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Motivation: Today’s Architectures 
Don’t Match Tomorrow’s Apps

• Yesterday’s Apps: Dense linear algebra (HPL)

– N2 operands from memory enough for N3 flops

– Big caches & wide memory permit ~100% utilization of many FPUs

• Today’s Apps: Sparse (but local) Linear Algebra (HPCG)

– Performance now proportional to memory bandwidth

– Lots of FPUs – largely worthless

• Emerging’s Apps: Truly Randomly Sparse (BFS, ML)

– Very few flops, mostly “random” accesses

– Small object size & irregular paths negate caches & wide paths

• These are all “batch”

• Irregular Memory Accesses is the Real Problem!

• And this exhibits itself in scalability
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Tomorrow’s Apps

• Massive persistent data sets (petabytes)
– Very sparse and very random

– Both “Table” and “Graph,” with 1,000s of properties

– Must be managed independent of specific apps

• Multiple apps in play at same time

• Wide spectrum of computational patterns
– Batch: perform specific processing over whole set

– Concurrent: many localized processing against specific 
subsets

– Streaming: stream of updates flow into system, with 
need to update prior queries when necessary
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Graphs

https://www.math.ksu.edu/~albin/matlab_html/graph_partitioning/gp_demo.html#18

A Graph
• V = set of Vertices (“Entities”)

• E = set of Edges (“Relationships”)

Graph Characteristics
• Vertex Property = value assoc. with vertex

• Edge weight = value assoc. with edge

• Degree = # edges from a vertex

• Path = sequence of edges connecting 2 vertices

• Diameter = furthest distance apart

Typical Graph Operations
• Compute vertex properties

• Search vertex properties

• Follow an edge to a neighbor

• Determine a neighborhood

• Find a path

• Look at all paths

• Compute properties of graph
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Kernel Identification Efforts

• GraphAnalysis: http://graphanalysis.org/benchmark/index.html

• GraphBLAS: http://www.graphblas.org/home/

• GraphChallenge: http://graphchallenge.org/

• Graph500: http://www.graph500.org/

• Firehose: http://firehose.sandia.gov/

• Mantevo: https://mantevo.org/

• Stinger: https://trac.research.cc.gatech.edu/graphs/wiki/STINGER

• VAST: http://vacommunity.org/HomePage

• Kepner & Gilbert: Graphs Linear Algebra

http://graphanalysis.org/benchmark/index.html
http://www.graphblas.org/home/
http://www.graph500.org/
http://firehose.sandia.gov/
https://mantevo.org/
http://vacommunity.org/HomePage
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The Spectrum of Kernels
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Anomaly - Fixed Key S X

Anomaly - Unbounded key S X

Anomaly - two-level key S X

BC: Betweeness Centrality B B S X

BFS: Breadth First Search B B B B B X X

Search for "largest" B X

CC weak: Weakly Connected Component B B S X

CC Strong: Strongly Connected Components B

Clustering Coefficients S

Community Detection S

Graph Contraction B

GTC: Global Triangle Counting B X

Insert/Delete S X

Jaccard B/S X

MIS: Maximally Independent Set B

PageRank B X

SSSP: Single Source Shortest Path B/S X B/S

All pairs Shortest Path B B

TL: Triangle Listing B

Geo & Temporal Correlation S X

OutputsBenchmarking Efforts

Kernel
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Real World
Graph Processing 

and Streaming
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Canonical Graph Processing Flow

Persistent Big Data/Graph Data Set

Seed

Identification
Selection

Criteria

Subgraph

Extraction

Seeds

Sub GraphSub GraphSub Graph

Batch

Analytics
Batch

Analytics
Batch

Analytics

Local

Update

Real-Time,

Stream

Events

Events

Graph

Properties
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Variations in Batch Analytics

• Search for a/all vertex with a particular 
property or neighborhood

• Explore region around some # of vertices

• Compute new property for each vertex

• Compute/output a property of a graph as 
a whole

• Compute/output a list of vertices and/or 
edges

• Compute/output a list of properties of all 
subgraphs with certain properties
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Real World vs. Benchmarking?

• Many different classes of vertices

• Many different classes of edges

• Vertices may have 1000’s of properties

• Edges may have timestamps

• Both batch & streaming are integrated
– Batch to clean/process existing data sets, add properties

– Streaming (today) to query graph

– Streaming (tomorrow) to update graph

• “Neighborhoods” more important than full 
graph connectivity
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Variations in Streaming Problems

“Streaming”: Data arrives incrementally

– With computations to be done incrementally

• Inputs specify vertex & insert/delete edges

– Less often insert/delete vertex

• Inputs specify vertex & update properties

– Look for changes in local graph parameters

– Look for changes in global graph parameters

– May involve search in neighborhood

• Inputs cause search for a matching vertex

– And update properties
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Stinger

• http://www.stingergraph.com/stinger/doxygen/index.php?i
d=introduction#whatdoesitdo

• Stinger: data structure for streaming apps 
from GaTech

• Suite of demo kernels implemented in it
– Streaming edge insertions and deletions:

– Streaming clustering coefficients:

– Streaming connected components:

– Streaming community detection:

– Streaming Betweenness Centrality:

– Parallel agglomerative clustering:

– K-core Extraction:

– Classic breadth-first search:

http://www.stingergraph.com/stinger/doxygen/index.php?id=introduction
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Centrality Metric Computation

• Look for “most important” vertices
– Degree: # of edges each vertex associated with

– Closeness: ave. shortest path to all other vertices

– Betweenness: how often vertex is on shortest path 
between 2 other vertices

– Eigenvector, PageRank, Katz: “influence” of a vertex

• Batch: compute metric for each vertex & 
report “N” largest
– Output O(|V|) when optionally add/update property

• Stream: If add an edge, how does it change 
vertex metrics and “Top N”
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Triangle Counting

• Metric: # of unique triangles in graph

• Batch mode variations
– Count # in entire graph: O(1) output

– Count # for each Vertex: O(|V|) outputs (Property)

– List all triangles: up to O(|V|3)

• Streaming: Add/Delete an edge
– What is change in triangle count

– What is change the associated vertices’ counts

– List all new triangles
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Jaccard Coefficient Γ(u , v)

d(u) = # of neighbors of i

ɤ(u, v) = # of common neighbors

Γ(u,v) = fraction of all neighbors that are 

shared

i

j

Green and Purple lead to common neighbors

Blue lead to non-common neighbors

u

v

Real world: 

• “Weighting” of paths

•Thresholding of Γ

• Very often |A|K, k>1

• “1.5” hops

Class A Class B
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Jaccard Batch Measurements
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JACS (Jaccard Coefficients / Sec) = 1.6E6*V0.26

Burkhardt “Asking Hard Graph Questions,” Beyond Watson Workshop, Feb. 2014.

MapReduce on 1000 node system, each with 12 cores & 64GB
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Jaccard Streaming

• Variants:
– Query: for a particular vertex what’s Γ (or γ)

– Query: for a particular vertex, what are all other 
vertices, optionally have Γ (or γ) > some threshold

– Edge insert: does this new edge affect any Jaccard #s

• Constraints: probably cannot afford to 
store O(|V|1.42) coefficients
– But could store “just statistics” : # non-zeros, largest 

Γ (and with which vertex), average Γ, etc

• Complexity of (re)computing on a new 
edge probably on O(d2) to O(d2log(d))
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Real World Relationship Problems

• Tough Problem: Find vertex pairs that “share some common property”

• Related graph problem: computing “Jaccard coefficients”

• Commercial version: “Non-obvious Relationship Problems” (NORA)

Which 2 entities 

share >1 

addresses?
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Entities:
e.g. people

Secondary Basis:
e.g. Apt. #

Alias:
e.g. Last Name

Primary Basis:
e.g. Street Address

Dedup values:
e.g: zip code, state,

What are the pairs 

of people that 

follow the same set 

of twitter feeds

from “Burkhardt & Waring, An NSA Big Graph Experiment”

http://www.pdl.cmu.edu/SDI/2013/slides/big_graph_nsa_rd_2013_56002v1.pdf
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Real World Challenge Problem
(From Lexis Nexis)

• 40+ TB of Raw Data

• Periodically clean up & 
combine to 4-7 TB

• Weekly “Boil the Ocean” to 
precompute answers to all 
standard queries

– Does X have financial 
difficulties?

– Does X have legal 
problems?

– Has X had significant 
driving problems?

– Who has shared addresses 
with X?

– Who has shared property 
ownership with X?

Auto Insurance Co: “Tell me about giving auto policy to Jane Doe” in < 0.1sec

“Jane Doe has no indicators

But

she has shared multiple 

addresses with Joe Scofflaw

Who has the following negative 

indicators ….”

Look up answers to 

precomputed queries 

for “Jane Doe”, and combine

Relationships
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But We Want Real-Time

• Real time streaming of edge/vertex updates

• Streaming queries: 

–Given specific ID1 

–Find all ID2s with “relationships” passing some 
threshold

ID1

…

ID2

…

Entity ID

Last Name

Address
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Sparsity and Locality
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Sparsity in Graphs

1. https://www.math.ksu.edu/~albin/matlab_html/graph_partitioning/gp_demo.html#18

2. http://socialcomputing.asu.edu/datasets/Twitter

An Irregular Graph1

• Degrees vary greatly

• Connectivity uneven

Example Twitter set2 (small):

• 11,316,811 vertices

• 85,331,846 edges

• Average degree = 7.5

A Regular Graph
• Each vertex has identically shaped neighborhood

• E,g.: each vertex above has 26 close-in neighbors

• Degree = 6

https://www.math.ksu.edu/~albin/matlab_html/graph_partitioning/gp_demo.html
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Graphs as Tables

https://www.math.ksu.edu/~albin/matlab_html/graph_partitioning/gp_demo.html#18

A Graph
• V = set of Vertices (“Entities”)

• E = set of Edges (“Relationships”)

Vertex ID Property Columns

v0
…

vi
…

vn

Vertex Key Value

…

Vertex Vertex WeightWeight

…

(a) Table for each vertex class

(b) Table for each 

edge class

Triple Store

Key can be:

• Vertex property

• Edge Type
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Graphs as Adjacency Matrices

https://www.math.ksu.edu/~albin/matlab_html/graph_partitioning/gp_demo.html#18

A Graph
• V = set of Vertices 

• E = set of edges

• Degree = # edges from a vertex

• Edge weight = # on edge

• Property = # assoc. with vertex

Adjacency Matrix
• A[i,j]=1 if edge between i & j

May be edge weight

• NNZ = # non-zeros = # edges

• Degree = # NZ/row

Typical Linear Algebra Ops:

If 

• A = bit matrix

• x = bit vector of vertices

Then

• Ax = Reachable in 1 hop

• A2x = Reachable in 2 hops

• …

Weighted A computes paths
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Linear Algebra API for Graphs

• Sparsity in data set is key differentiator

• http://www.graphblas.org/home/

• http://graphblas.org/index.php/Graph_BLAS_Forum

http://www.graphblas.org/home/
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Representing Sparse 
Adjacency Matrices

https://www.math.ksu.edu/~albin/matlab_html/graph_partitioning/gp_demo.html#18

A Graph
Adjacency Matrix

(a) CSR

i

i+1

Vertex

Vector

1/edge

Vertex id Edge Weight

(b) Linked List

i

i+1

Vertex

Vector

Next edge

Vertex id

Edge weight

Next edge

Vertex id

Edge weight

Real Adjacency Matrices often have a few non-zeros per x-million element rows

Corresponds to very low degree relative to |V|
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Stinger: A Mixed Representation

http://www.stingergraph.com/data/uploads/stinger_design.png

Linked list of 

CSR-like blocks
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Sparsity and Locality

• Assume multi-node parallel system

– Vertex data “striped” across all nodes

– Unique subset on each node

Where do edge representations get stored?

• With source vertex (especially with CSR)

– All local accesses for edge information

– Requires remote accesses for target vertex properties

• With target vertex (especially with Linked list)

– Sequential remote accesses to get next non-zero

– With extra pointer access to get “next edge”

– But all target vertex properties are then local

• Stinger: CSR-like block on node with those targets

– Eliminates intermediate pointer chasing
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Sometimes We Can Reorder

https://www.math.ksu.edu/~albin/matlab_html/graph_partitioning/gp_demo.html#18

A Graph
Adjacency Matrix Let’s “reorder” the Vertices

• Locality = how many NZ in 

same memory

Seldom Possible to Do This Reordering: esp. for Streaming Updates
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What About High-Degree Vertices?

• Real graphs have huge variation in degree
– Consider Google or Amazon in a web graph

• CSR bad fit for huge out-degree 

• Linked list bad fit for huge in-degree

• Option: each node has own copy of vertex 
info on each high-degree vertex
– Local edge lists only for edges terminating on this node

• Algorithms over high-degree vertices now 
different
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Sparsity on a Single Core

Dense Matrix-Matrix

Sparse Matrix-Matrix

Song, et al. “Novel Graph Processor Architecture, Prototype System, and Results,” IEEE HPEC 2016
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Using Today’s Parallel
Architectures
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Canonical Graph Processing Flow

Persistent Big Data/Graph Data Set

Seed

Identification
Selection

Criteria

Subgraph

Extraction

Seeds

Sub GraphSub GraphSub Graph

Batch

Analytics
Batch

Analytics
Batch

Analytics

Local

Update

Real-Time,

Stream

Events

Events

Graph

Properties
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Seed Identification

• Typical algorithm: Scored Search
– Step 1: Search thru all vertices

• Apply select predicate to vertex properties

– Step 2: Score passing vertices

• Scale selected columns by weighting factor & sum

– Step 3: Report “Top N” passing scores

• Typically 10-100

• Steps 1, 2 embarrassingly parallel if each 
vertex has all properties on same node

• Finding Top N is major parallelization issue
– O(N*log(P)): Do local Top N and exchange only at end

– Or send to distributed structure, with threshold feedback
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Some Analytics

• HPCG: Solving Ax = b in 3D grid, but
– Extremely sparse, notionally ~27 non zeros per row

– But sparseness can be localized

• SpMV: Sparse matrix-vector product
– Core kernel of both HPCG and many graph analytics

– Many non-HPCG cases both sparser with significant 
variation in out-degree

• BFS: Breadth First Search from GRAPH500
– Again very sparse, but huge variation in out-degree 

– Very little “programmable” locality
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Breadth First Search

• Core of GRAPH 500 rankings

• Start with a root, find all 
reachable vertices

• Metric: TEPS: Traversed 
Edges/sec

• Performance issues

• Massive data sets

• Very irregular access

• Very challenging load balancing
Scale = log2(# vertices)

Level Scale Size

Vertices

(Billion) TB

Bytes

/Vertex

10 26 Toy 0.1 0.02 281.8048

11 29 Mini 0.5 0.14 281.3952

12 32 Small 4.3 1.1 281.472

13 36 Medium 68.7 17.6 281.4752

14 39 Large 549.8 141 281.475

15 42 Huge 4398.0 1,126 281.475

Average 281.5162

GRAPH500 Graph Sizes

2
0

9

1
3

5

7

8e0 e1

e2

e3
e4

e5

e6

e7
e8

Starting at 1: 1, 0, 3, 2, 9, 5

Real-World: Eqvt of BFS thru 1-3 layers only
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Sparsity & Parallelism

3

8

0.001

0.01

0.1

1

10

100

1000

1 10 100 1,000 10,000 100,000

P
e

rf
o

rm
an

ce
 N

o
rm

al
ze

d
 t

o
 P

e
ak

 S
in

gl
e

 D
o

m
ai

n
 

Domains
HPCG:Unconv HPCG:Conv SpMV:Sparse7 SpMV:Sparse49 SpMV:Sparse73 BFS

Observation: Extreme Sensitivity to

• Level of Sparsity

• # of physically separate memory domains

Across all kernels,  it takes 10-

1000 nodes of distributed 

memory systems to equal best of 

single domain systems for the 

sparsest problems



39CLSAC: Oct. 26, 2016

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 10 100 1,000 10,000

G
TE

P
S

Cores in Node

Recent GRAPH500 Data

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1 10 100 1,000 10,000 100,000

G
TE

P
S

Nodes

Expansion of Single Node Region

Single

Rack

100’s of 

racks

Single Node/Domain systems are more efficient than multi-node

BUT do not scale



40CLSAC: Oct. 26, 2016

BFS and Energy
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Modeling the LexisNexis Problem
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Details: Heavyweight Alternatives
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Emerging
Architectures



44CLSAC: Oct. 26, 2016

A Novel Sparse Graph Processor

Song, et al. “Novel Graph Processor Architecture, Prototype System, and Results,” IEEE HPEC 2016
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Return to LexisNexis Problem

2013 study looked at “future” alternatives

• “Lightweight” systems
– Lower power, lower performance cores

– Study assumed Calxeda 4-core ARMs

– but systems like HP Moonshot similar

• Sandia’s X-Caliber project
– Heavyweight with HMC-like memories

– Now like Intel’s Knights Landing

• All processing on bottom of 3D stack
– System = “sea” of stacks

(b) X-caliber Node Mockup
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Matching Projections
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Traveling Threads

• Single Address Space Visible to all Hosts & Gossamer Cores

• Hosts can launch:

– Reads and Writes of Memory

– Threads for execution on Gossamer core 

• Threads on a Gossamer Core can

– Spawn new threads

– Migrate threads to other cores

• Memory need not be just today’s DRAM

System

Interconnection
• Target Memory Address

• Threadlet PC

• A few working registers

• (Very) short program

GOSSAMER THREADLET

Routing done 

on basis of

target address

Gossamer 

CoreMemory

MemoryConventional

Host Memory references

converted to threadlets,

with ability to send

Function Calls “to the memory”

Gossamer 

Core Memory

Gossamer Core:

• Very simple multi-threaded dataflow

• Interacts directly with memory interfaceKogge, “Of Piglets and Threadlets: Architectures for 

Self-Contained,  Mobile, Memory Programming, 

IWIA, Maui, HI, Jan. 2004

Internal

System

Interconnect

Memory

Gossamer Core

Memory

Gossamer Core

Memory

Gossamer Core

Memory

Gossamer Core

Memory

Gossamer Core

Memory

Gossamer Core

Memory

Gossamer Core

Memory

Gossamer Core

Memory

Gossamer Core

Memory

Gossamer Core

Memory

Gossamer Core

Memory

Gossamer Core

Local

Host

Memory

Network

Interface

Core
Core

Core
Core

Cache

Core
Core

Core
Core

Cache

Core
Core

Core
Core

Cache

Core
Core

Core
Core

Cache

• Single Address Space

• Visible to all Hosts & 
Gossamer Cores

• Hosts can issue

– Reads and Writes

– Threadlets

• Gossamer Cores can

– Spawn new 
threadlets

– Migrate threadlets to 
other cores
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But You Want Real-Time?

Query: Given specific ID1 find all ID2s meeting  requirements

ID1

…

ID2

…

Entity ID

Last Name

Address

Estimated 
Gain

Emu1 vs
2013

Emu3 vs
2013

Response 
Time

250X 250X

Queries/Sec 30X 100,00X
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Summary

• Huge variation in application kernels

• Today’s benchmarks != real-world

• Streaming != batch

– What is computed greatly affects complexity

– May look more like sparse problems

• Sparsity & locality huge drivers for parallel

– Phenomena of Single domain systems

• Issues are with memory, not processing

• Wide range of emerging architectures 
attack the memory, not compute
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