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CLSAC 2018 Theme
High Impact Large-Scale Analytics

“Consequence analytics”          “Taking Action”        “Credible, trustworthy”

Implies we would benefit from EXPLANATIONS for the results of our analytics.   
Or that our analytics be more EXPLAINABLE.

Philosophy of Explanations can be as deep and long as you have time
● Reduction and emergence: “why does water boil at 212℉?”
● Ref beliefs, epistemology: “Why is the atom of copper at the tip of the nose 

of the statue of Churchill in London’s Parliament square, there?”
● Intent: “Explain why you think that packet ping is malicious.”

See David Deutsch, The Fabric of Reality 1997
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David Hume (1711-1776) - Scottish Empiricist
● Our ideas are based on our impressions, which come from our senses.  

Immanuel Kant (1724-1804) - Prussian 
● Our knowledge is formed taking experience in reference to “a-priori.” 

Judea Pearl (1936-Present) - American
● “No machine can derive explanations from raw data. It needs a push.”

William of Occam (1285 - 1347) - English Franciscan
● “When you have two competing theories that make exactly the same 

predictions, the simpler one is better.”

This drives us to specify MODELS that are compact and have SPARSITY
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Tensor Decompositions as Explanations
Introduction to Tensor Decompositions

● Tensor analog of low-rank matrix factorizations
● Unsupervised learning 
● Tensor is decomposed into a non-unique weighted sum of a predefined 

number R of LOW RANK components
○ Component = “EXPLANATORY FACTOR” [Hong, Kolda, Deursch 2018]
○ Tensor decomposition compresses = shorter -> better
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Introduction to Tensor Decompositions
Example: Making Sense of Geospatial Data

Four
conspirators

Days of 
surveillance

Early morning

Targets
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Application Areas for Tensor Decomposition

10



Chesapeake Large Scale Analytics Conference (CLSAC)
Annapolis Maryland, October 30-November 1, 2018

Exascale NonStationary Graph Notation (ENSIGN)
Unique Insight from Large-Scale Multi-Attribute Data 

Class Differentiating Specifics Benefit to Analyst

Modeling

First Order Decompositions
Second Order Decompositions
Joint Decompositions
Multiple Probability Models
Customer Special Decompositions
… more coming

Breadth of models enabled
Framework for graph fusion
Platform for anomaly detection
Sparsity-maximizing approaches

Performance

Optimized Sparse Tensor Data Structures
Mixed static/dynamic optimization
Memory-efficiency optimizations
Algorithmic improvements
Shared memory parallelism
Distributed memory parallelism

Extend the range, scale, and scope of analysis
Analyze tensors with 109 non-zeroes and beyond 
Enable large rank R decompositions
Enable large number of mode decompositions
Leverage High Performance Computing (HPC) Systems

Streaming Streaming CP, Tucker Efficient update with arrival of new data
Discovery of new behaviors through new component formation

Usability

GUI & CLI
Python Bindings
C Bindings
QGIS Support
Virtual Machine Distributions
Documented, Tested, Supported

Interactive large scale exploration 
In standard environments (e.g., Jupyter notebooks)
Integration with existing corporate data lakes/pipelines
Visualization
Reliable install and operation
Training, Someone to Call
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See https://www.reservoir.com/product/ensign-cyber/ and  https://www.reservoir.com/research/tech/tensor-analysis/ for product info.

https://www.reservoir.com/product/ensign-cyber/
https://www.reservoir.com/research/tech/tensor-analysis/
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Compression and Sparsity
Compressive Sensing

David Donoho 2004, Terry Tao, Emmanuel Candes 2006
● Observe y, choose x that maximizes SPARSITY
● Intractable, but, L1 norm minimization is equivalent
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(Image from http://informationtransfereconomics.blogspot.com/2017/10/compressed-sensing-and-information.html)

Sparsity provides
● Performance benefit - need fewer measurements
● Interpretation/explanatory benefit
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Sparsity

● Sparsity is a form of model selection
● Enforcing sparsity forces the model to throw away less 

important information
● The information the model keeps is forced to capture more 

useful patterns or features present in the data
● Leads to crisper, more interpretable results

Less sparse, more 
difficult to interpret

More sparse, more easy 
to interpret
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Not all Sparse Solutions are Created Equal

● There is a tradeoff between sparsity/interpretability and model 
accuracy
○ True model may be above human understanding
○ Should be careful not to sacrifice too much accuracy at the 

cost of interpretability
● Therefore, the method we use to induce sparsity is important

○ Changes what sacrifices (if any) are made for the sake of 
sparsity

○ Different methods strike different balances
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L2 Regularization

● L0 norm directly counts the number of nonzeros, but is infeasible to 
optimize

● L2 norm is a relaxation of the L0 norm which is easier to optimize
● Corresponds to a Gaussian prior
● Closed form analytic updates available [Royer, Comon, Thirion-Moreau 

2011]

L2 regularization term

Closed form analytic 
updates
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L2 Regularization Results

● Performed rank 10 
decompositions of Cyber data 
from SCinet with different L2 
hyperparameters

● Measured how L2 
regularization affected 
component weights

● Shows how the 
decomposition compresses 
the data into lower rank

● Increasing L2 regularization 
parameter led to more 
compression

● Less components to analyze, 
more interpretable
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CP-APR

● Loss function is Kullback-Leibler 
divergence from Poisson 
likelihood function [Chi and Kolda 
2012]
○ Specialized to count data

● Workhorse algorithm for cyber 
and geospatial datasets

● Includes nonnegativity constraints
● Alternatively updates one factor 

matrix at a time
○ Performs first-order gradient 

descent

CP-APR Loss Function
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CP-APR-PQNR

● Uses same loss function as 
CP-APR

● Optimizes each row of a factor 
matrix one at a time

● Uses L-BFGS to optimize each 
row (second-order optimization 
method)

[Hansen, Plantenga, and Kolda 2015]
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APR vs PQNR Results

● APR and PQNR both have same 
number of max iterations, so must 
compare for a given number of 
iterations or runtime

● PQNR results are significantly more 
sparse than APR

● PQNR iterates become sparser 
faster during the optimization 
process

● PQNR is second-order method, can 
escape saddle points more easily

[Hansen, Plantenga, Kolda 2015]
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Advantages of Second-order Methods

● “Optimal Brain Damage” [Le Cun, Denker, 
Solla 1990]
○ Second derivative yields “saliency” or 

“importance” of a weight to the loss 
function

○ Iteratively pruned weights with lowest 
saliency and retrained

○ Able to prune 60% of the parameters 
and retain accuracy

○ Gradient is more “volatile” for more 
important parameters

● Second-order methods can take advantage 
of the saliency information of model 
parameters, leading to sparser solutions

Pruning by second derivative leads to less 
loss in accuracy than pruning by magnitude

Bottom curve: With retraining after pruning
Top curve: No retraining after pruning

Able to prune 60% of parameters and 
retain accuracy [Le Cun1990]
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Gaussian vs Poisson

● Gaussian
○ Continuous-valued, includes negative support

● Poisson
○ Discrete, non-negative support

CP-ALS Loss Function CP-APR Loss Function

27
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CP-ALS vs CP-APR on Cyber Data

● Cyber tensor: four modes
○ sender x receiver x sender port x hour

● APR components are sparser and crisper
● ALS components contain more noise

○ More specialized to continuous data

Example ALS Component Example APR Component

CP-ALS Loss Function

CP-APR Loss Function
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Loss Functions

● One reason behind the success of 
CP-APR is that the likelihood function 
is a Poisson distribution
○ It is a better fit to count data

● Main idea: Use the best likelihood 
function for your data
○ More flexibility in model choices 

leads to better fit to the data
○ Different model choices lead to 

different levels and types of 
sparsity

○ This is the idea behind 
Generalized CP Decompositions 
[Hong and Kolda 2018]

Gamma

Rayleigh

Negative Binomial
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Orthogonality

● Imposed by adding a 
regularization term to the loss 
function

● Hadamard product of all 
component matrix Gramians is 
shifted towards the identity 
matrix

● Two components are considered 
“orthogonal” if they have dot 
product zero in at least one 
mode

● Encourages all components to 
be pairwise orthogonal

[Afshar, Perros, Ho, Khalil, et. al. 2017]
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Orthogonality

● “Local” vs “Global” sparsity
○ Local: L2 regularization penalizes each term 

individually
○ Global: Orthogonality penalizes a term with 

respect to other entries
‒ Penalizes more if other components already 

contain nonzero in that index
‒ The idea is to make the components 

non-overlapping
● Increases sparsity as a by-product
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Decorrelating Representations

● Non-overlapping 
components is the same as 
the idea of Decorrelating 
Representations

● Reduces overfitting and 
improves interpretability

● Visual cortex decorrelates 
representations when 
adapting to new shapes
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Orthogonality Results

● Enron emails dataset: 
three mode tensor
○ sender x receiver x 

time

Sender

Receiver

Time

Without orthogonality With orthogonality

Corresponding spikes

● Orthogonality cleans up 
noise, sparsifies and 
isolates dominant spikes
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Summary of Methods

Sparsification Approach Benefit Drawback

L2 norm regularization Directly penalize each individual 
parameter

Doesn’t take into account “global” 
information

Second-order optimization Use optimization procedure that 
utilizes “saliency” information

More computationally expensive

Loss function Change underlying model to fit data 
generating process better

Is a subjective decision

Orthogonality Decorrelate representations, reduce 
overfitting

True patterns of activity might not 
be completely decorrelated

No free lunch!
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Conclusion

● Methods induce sparsity directly and indirectly
● Reasoning for each method is based on making the model/algorithm 

more “cognitive,” leads to interpretability/sparsity as a byproduct
○ Focus is on algorithm’s process, not results

● Conclusion: to have more interpretable models, think from the model’s 
perspective - give it the right framework to work with (loss function), the 
right information (“saliency”), and slightly nudge it in the right direction 
(decorrelate representations)
○ Important to have a tool which has these multiple capabilities
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