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CLSAC 2018 Theme
High Impact Large-Scale Analytics

“Consequence analytics” “Taking Action”  “Credible, trustworthy”

Implies we would benefit from EXPLANATIONS for the results of our analytics.
Or that our analytics be more EXPLAINABLE.

Philosophy of Explanations can be as deep and long as you have time

e Reduction and emergence: “why does water boil at 212°F?”

e Ref beliefs, epistemology: “Why is the atom of copper at the tip of the nose
of the statue of Churchill in London’s Parliament square, there?”

e Intent: “Explain why you think that packet ping is malicious.”

See David Deutsch, The Fabric of Reality 1997
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David Hume (1711-1776) - Scottish Empiricist
e Qurideas are based on our impressions, which come from our senses.

Immanuel Kant (1724-1804) - Prussian
e Our knowledge is formed taking experience in reference to “a-priori.”

Judea Pearl (1936-Present) - American
e “No machine can derive explanations from raw data. It needs a push.”

William of Occam (1285 - 1347) - English Franciscan
e “When you have two competing theories that make exactly the same
predictions, the simpler one is better.”

This drives us to specify MODELS that are compact and have SPARSITY
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Tensor Decompositions as Explanations
Introduction to Tensor Decompositions

e Tensor analog of low-rank matrix factorizations
e Unsupervised learning

e Tensor is decomposed into a non-unique weighted sum of a predefined
number R of LOW RANK components

o Component = “EXPLANATORY FACTOR” [Hong, Kolda, Deursch 2018]
o Tensor decomposition compresses = shorter -> better

2
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Introduction to Tensor Decompositions
Example: Making Sense of Geospatial Data
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Application Areas for Tensor Decomposition
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Exascale NonStationary Graph Notation (ENSIGN)
Unique Insight from Large-Scale Multi-Attribute Data

Differentiating Specifics Benefit to Analyst

First Order Decompositions
Second Order Decompositions
Joint Decompositions

Multiple Probability Models
Customer Special Decompositions
... more coming

Modeling

Optimized Sparse Tensor Data Structures
Mixed static/dynamic optimization
Memory-efficiency optimizations
Algorithmic improvements

Shared memory parallelism

Distributed memory parallelism

Performance

Streaming Streaming CP, Tucker

GUI & CLI

Python Bindings

C Bindings

QGIS Support

Virtual Machine Distributions
Documented, Tested, Supported

Usability

Breadth of models enabled
Framework for graph fusion
Platform for anomaly detection
Sparsity-maximizing approaches

Extend the range, scale, and scope of analysis

Analyze tensors with 10° non-zeroes and beyond
Enable large rank R decompositions

Enable large number of mode decompositions
Leverage High Performance Computing (HPC) Systems

Efficient update with arrival of new data
Discovery of new behaviors through new component formation

Interactive large scale exploration

In standard environments (e.g., Jupyter notebooks)
Integration with existing corporate data lakes/pipelines
Visualization

Reliable install and operation

Training, Someone to Call

See https://www.reservoir.com/product/ensign-cyber/ and https://www.reservoir.com/research/tech/tensor-analysis/ for product info.

Pat. US 9,471,377, Pats. Pending

Reservoir Labs

11

Chesapeake Large Scale Analytics Conference (CLSAC)

Annapolis Maryland, October 30-November 1, 2018


https://www.reservoir.com/product/ensign-cyber/
https://www.reservoir.com/research/tech/tensor-analysis/

Outline

e (ontext and objectives
e Tensor decompositions as explanations
e Adiscussion on sparsity
o  Why
o Methods
— L2 norm reqularization
— Second-order optimization
— Loss function
— Orthogonality

e (onclusion

Reservoir Labs Chesapeake Large Scale Analytics Conference (CLSAC)
Annapolis Maryland, October 30-November 1, 2018

12



Compression and Sparsity
Compressive Sensing

David Donoho 2004, Terry Tao, Emmanuel Candes 2006
e (bserve y, choose x that maximizes SPARSITY
e Intractable, but, L1 norm minimization is equivalent

s

HEE EEEEE EECEEEES

Sparsity provides
e Performance benefit - need fewer measurements
e |Interpretation/explanatory benefit

(Image from http://informationtransfereconomics.blogspot.com/2017/10/compressed-sensing-and-information.html)
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Sparsity

e Sparsity is a form of model selection

e Enforcing sparsity forces the model to throw away less
important information

e The information the model keeps is forced to capture more
useful patterns or features present in the data

e |eads to crisper, more interpretable results
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Less sparse, more More sparse, more easy
difficult to interpret to interpret
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Not all Sparse Solutions are Created Equal

e There is a tradeoff between sparsity/interpretability and model
accuracy
o True model may be above human understanding
o Should be careful not to sacrifice too much accuracy at the
cost of interpretability
e Therefore, the method we use to induce sparsity is important
o (Changes what sacrifices (if any) are made for the sake of
sparsity
o Different methods strike different balances
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L2 Regularization

e L0 norm directly counts the number of nonzeros, but is infeasible to
optimize

e |2 normis a relaxation of the LO norm which is easier to optimize

e (Corresponds to a Gaussian prior

e (losed form analytic updates available [Royer, Comon, Thirion-Moreau
2011]

G(A,B,C) = F(A,B,C) + ol Az + BIBlF +~[Cl%

\ J
|

L2 reqularization term

A=T;*(CoB)[(CoB)T)(COB)+als,

B — T‘(IéfI(C@A) (CoA)T)CoA) +ﬂIF-T, __ Closed fodrn;analytic
; 5 updates

C=T35"(BoA)[(BOAT)(BOA)+1lr]
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L2 Regularization Results

Performed rank 10
decompositions of Cyber data
from SCinet with different L2
hyperparameters

Measured how L2
reqularization affected
component weights

Shows how the
decomposition compresses
the data into lower rank
Increasing L2 reqularization
parameter led to more
compression

Less components to analyze,
more interpretable

Component Weights by L2 Regularization Parameter
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CP-APR

e Loss function is Kullback-Leibler

divergence from Poisson
likelihood function [Chi and Kolda
2012]

o Specialized to count data
Workhorse algorithm for cyber
and geospatial datasets
Includes nonnegativity constraints
Alternatively updates one factor
matrix at a time

o Performs first-order gradient

descent

fM) = Zmi — xi log my,

CP-APR Loss Function

Algorithm 2 CP-APR Algorithm

I initialize A(Y .. A(N)

2: repeat

X forn=1...N do

4 I = (OmeaA™)T

5 repeat

6 ® = (X(m) @ (A"’
7 A =AM 4

& until convergence

9:  end for

0

10: until convergence

[Chi and Kolda 2012]
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CP-APR-PQNR

e Uses same loss function as Algorithm 1 Alternating Block Framework

Given data tensor X of size I; X I X -+ X I, and the number of components R

- Return a model M = [\;AM ... AM)]
CP APR 1: Initialize A™ e RI-XB forn=1,...,N
e Optimizes each row of a factor e, . s
. . 4 Lt II™ = (AM ...0 A o AP Do, . .0 AT
matI'IX One at a tl me 5 Use Algorithm 2 to compute B* that minimizes f(B(")) s.t. B™ >0
e Uses L-BFGS to optimize each T AR, e

A+ eTB*
end for
row (second-order optimization

until all mode subproblems have converged
method)

Algorithm 2 Row Subproblem Framework for Solving (2.6)
Given Xy of size I, X Jn, and II™ of size R x Jj,

Return a solution B* consisting of row vectors BI, — ,B; -
1: fori=1,...,I, do
2: Select row X; of X
3: Generate one column of II™ for each nonzero in X;

4 Use Algorithm 3 or 4 to compute B: that solves

min fmw(f)(»n) fc(n),H(")) subject to b; > 0

3 54

5: end for

[Hansen, Plantenga, and Kolda 2015]
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APR vs PQNR Results

e APR and PONR both have same
number of max iterations, so must
compare for a given number of
iterations or runtime

e PONRresults are significantly more  +% & & + 5 v wm

(a) R=20 (b) R=60 (c) R =100
Sparse than APR Fig. 4.8: Effectiveness of the algorithms in finding a sparse solution for a full three-way
. solut.ion. In each case the tot.al meber of elements in A(l)., A® , and A® equal to
e PONR iterates become sparser R R A b e gl g
tensors, so the final number of zero elements has ten different values.
faster during the optimization
process [Hansen, Plantenga, Kolda 2015]

e PONR is second-order method, can

escape saddle points more easily

o

40 4 |
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20 30
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—PDN-R|| 10 2
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Advantages of Second-order Methods

e “Optimal Brain Damage” [Le Cun, Denker,
Solla 1990]

o Second derivative yields “saliency” or
“importance” of a weight to the loss
function

o lteratively pruned weights with lowest
saliency and retrained

o Able to prune 60% of the parameters
and retain accuracy

o Gradient is more “volatile” for more
important parameters

e Second-order methods can take advantage
of the saliency information of model
parameters, leading to sparser solutions

0 500 1000 1500 2000 2500
Parameters

Pruning by second derivative leads to less
loss in accuracy than pruning by magnitude

16
14 (a)
12
10

log MSE

N o & oo

bty 8

-

0 500 1000 1500 2000 2500
Parameters

Bottom curve: With retraining after pruning
Top curve: No retraining after pruning

Able to prune 60% of parameters and
retain accuracy [Le Cun1990]
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Gaussian vs Poisson

e (aussian

o Continuous-valued, includes negative support
e Poisson

o Discrete, non-negative support

; 0.40[—
0.35} e A=1
" 030 | Asd
05 o025l | ® a=10
;g'o,s %O.ZO' ‘é)’.\
“oist o ® -
02 [\ »
0.10 i\ o QO\
. 5 4 3 2 1 : 0 1 2 : 3 : 4 : 5 005'.’ \b\/op\ O\O
X 0.00-Geet—gaassNs 15 20
K
g 1 : 2
FAD,..., A = 2 H %2 —[AD, ..., AM] H . FOV) =" my — z;logm,
i
CP-ALS Loss Function CP-APR Loss Function
[Chi and Kolda 2012]
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CP-ALS vs CP-APR on Cyber Data

e (Cyber tensor: four modes
O  sender x receiver x sender port x hour

e APR components are sparser and crisper

e ALS components contain more noise
o More specialized to continuous data

Example ALS Component

000000

00000

111111

0000000

_—
) =1
A G AR =

CP-ALS Loss Function

” % —[AD,..., A H2

FOV) = m; — zilogmy,

CP-APR Loss Function

T
200

T
400

T T T T T T
600 800 1000 1200 1400 1600

Example APR Component
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Loss Functions

e One reason behind the success of
CP-APR is that the likelihood function

- k=10.8=20
k=20.8=20
k=30.8=20
k=50.86=10
k=9.0.8=05
k=75.86=10
k=05.86=10

is a Poisson distribution Gamma
o ltis a better fit to count data
e Main idea: Use the best likelihood il =
function for your data ol |
o More flexibility in model choices N
leads to better fit to the data " )
o Different model choices lead to | 2 Sa_—
different levels and types of Rayleigh
sparsity
o This is the idea behind ol .
Generalized CP Decompositions 0.06}
[Hong and Kolda 2018] w1 —
R TR TR T
Negative Binomial
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Orthogonality

Imposed by adding a
reqularization term to the loss
function

Hadamard product of all
component matrix Gramians is
shifted towards the identity
matrix

Two components are considered
“orthogonal” if they have dot
product zero in at least one
mode

Encourages all components to
be pairwise orthogonal

% el

n=1r=1

s %me) ~ Amg™’

F1

bo (a0 4y ) -1}

o 2
2

F2

[Afshar, Perros, Ho, Khalil, et. al. 2017]
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Orthogonality

e “Local’ vs “Global” sparsity
o Local: L2 reqularization penalizes each term

individually
o Global: Orthogonality penalizes a term with

respect to other entries

— Penalizes more if other components already
contain nonzero in that index

— The idea is to make the components
non-overlapping

e Increases sparsity as a by-product

Reservoir Labs Chesapeake Large Scale Analytics Conference (CLSAC)
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Decorrelating Representations

e Non-overlapping
components is the same as
the idea of Decorrelating
Representations

e Reduces overfitting and
improves interpretability

e Visual cortex decorrelates
representations when
adapting to new shapes

nature —Z 0\

COMMUNICATIONS \.

Article = OPEN Published: 19 September 2018

Under review as a conference paper at ICLR 2018

LEARNING LESS-OVERLAPPING REPRESENTATIONS

Anonymous authors
Paper under double-blind review

Published as a conference paper at ICLR 2016

REDUCING OVERFITTING IN DEEP NETWORKS BY
DECORRELATING REPRESENTATIONS

Michael Cogswell Faruk Ahmed Ross Girshick
Virginia Tech Université de Montréal Facebook Al Research (FAIR)
Blacksburg, VA Montréal, Quebec, Canada Seattle, WA

cogswell@vt.edu faruk.ahmed@umontreal.ca rbg@fb.com

Adaptation decorrelates shape Larey Zitnick Bl Bates
. Seattle, WA Blacksburg, VA
representatlons larryz@microsoft.com dbatra@vt.edu
Marcelo G. Mattar, Maria Olkkonen, Russell A. Epstein & Geoffrey K. Aguirre
Nature Communications 9, Article number: 3812 (2018)  Download Citation £
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Orthogonality Results

e Enron emails dataset:
three mode tensor

o sender x receiver x

Corresponding spikes

e Orthogonality cleans up

noise, sparsifies and
isolates dominant spikes

time
1980 I‘, / 460 l
1179 - 3435 - \
Sender _::78 . || | - | Il|| s 'Il - 'I”l I I' o |I|I| o ||||Iyyﬁ‘“ e lllllln Il ::: \ \
22 . 0061 L5t : \l .'IIA.. B I T |l 2
Receiver == ‘ / \
»z R ERD
. . (I) 1'5 30 / 105 ) 1'5 31'3 4‘5 0’3 7'5 “E 105
T|me 0416 | | | | | I | | | I | I I L L - | l | |> 02723
- - ‘/ gl susspsmrn 0 ll‘l
Without orthogonality With orthogonality
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Summary of Methods

L2 norm regularization Directly penalize each individual Doesn’t take into account “global”
parameter information
Second-order optimization Use optimization procedure that More computationally expensive

utilizes “saliency” information

Loss function Change underlying model to fit data | Is a subjective decision
generating process better

Orthogonality Decorrelate representations, reduce | True patterns of activity might not
overfitting be completely decorrelated

No free lunch!

Reservoir Labs Chesapeake Large Scale Analytics Conference (CLSAC)
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Conclusion

e Methods induce sparsity directly and indirectly
e Reasoning for each method is based on making the model/algorithm
more “cognitive,” leads to interpretability/sparsity as a byproduct
o Focus is on algorithm’s process, not results
e (onclusion: to have more interpretable models, think from the model’s
perspective - give it the right framework to work with (loss function), the
right information (“saliency”), and slightly nudge it in the right direction
(decorrelate representations)
o Important to have a tool which has these multiple capabilities

Reservoir Labs Chesapeake Large Scale Analytics Conference (CLSAC)
Annapolis Maryland, October 30-November 1, 2018
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