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= Challenges in processing cyber
data

- "Behavior”-based analytics

= Planning collection and

retention as methods to scale [EEEEEtg 1L 1L
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— Feature-based

— Models from users (rules)
or machine learning

— Reason about context

Challenges:

« Data is large

* Training is sparse

« Attacks & environment change



Challenges of scale

= # of cyber-security risks is
InCcreasing

= Spending on cyber-security is
lagging behind
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Challenges of scale

= # of cyber-security risks is = Amount of data collected is also
increasing growing very rapidly, and
cannot be sustained

lagging behind

Amount of security data: SPB end-points: 175M

# attack sensors: 126M # threat events / sec: 1K

# emails/day: 2.4B # products: 79K # vendors: 25K

Symantec threat collection capabilities



How to scale-up cyber analytics

More/better compute resources
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Scalable algorithms
— Better-than-linear complexity
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Problems solved by Cyber Analytics

= Formal problems types:
— Ranking/anomaly detection
— Node classification/labeling
— Group detection
— Joint contextual inference
— POL learning
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= Representative use-cases:
— Activity classification
— Botnet detection
— Stepping-stone attacks _
— Malicious web traffic/attacks 9310111101
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Abstracting cyber activity analysis
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- Host (e.g., event/process log e ST
322

- Network (e.qg., flows)
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= Objects of analysis:

- User, IP, (sub)network,
organization

= Features:
— Behavior-based
= Social, functional, application
- Event-based
= IDS, rule-based alerts
- ML-based
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Cyber flow data

= Social information:
— who talks to whom
= Functional information:

— What applications / services are
running on the machine (and use
which ports)

= Collected at the edge or on local

networks
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Example “behavioral” features
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= Features are obtained e
using topological
application graph patterns
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Disambiguation power: Attack vs Normal

Attack SSH Normal SSH
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Disambiguation power: Attack vs Normal

Attack SSH Normal SSH

dstlP.192.168.5.122 dstPort.110 rePort.580
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Relational information matters

Function detection from pology
= Normal and abnormal bl osfrst el oo Nl ——

activities can be detected

by chaining packet
clustering and analyzing
topology of resulting IP-
to-IP networks
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(a) all applications

(c) FileSharing and Web removed

= How much network
density do we need to
preserve the detection
rates?
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Gnutella P2P BitTorrent Slammer worm
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High average degree,  High graph diameter, Large # of discon-
large connected spider’s web with nected components,

component large paths high out-star count
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General analysis setup

Features
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» Dataset can contain very large # of points
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General analysis problem

Po (x ) = Representation/
likelihood Generation

X —> analytic

Do (y\x) - Inference/

_ Discrimination
posterior

= Technical problems:
- Learn parameters 6
— Construct distribution pg(x) or pg(y|x)
— Develop approach to sample from pgy(x)



Example analytic: semi-supervised learning

Ground truth (dense)

= Data contains very few labels

= Graph-based semi-supervised
learning exploits structure
between unlabeled points

= Label distribution obtained via
message passing:
y=A4A-y+z

= Closed-form solution:
y=(U—-A4)"1z

= Approximate solution via sparse
matrix decomposition

— Has limited scaling
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Distributed analysis workflow

Cyber Environment

= Distributed processing challenge
— Local-global data moves restricted

preprocessing
v v 3

Feature Data

Classification

attributes

local views
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— Global attacks are locally invisible

— Analytics chaining/orchestration is

ad-hoc
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= Data management challenge
— Multiple analytics have diverse

data requirements & goals

about other analytics

— Individual analytics rarely reason
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Scale up by filtering

Original (dense) Reduction 1 Reduction 2
e®® Class B co © © ® 0. o .Class B «c © © O o .Class B

® 000 ® o o ® o ©
oo @ o _ oo © o

LIPS o Jo ®o e o ®
® o000 ® @ ®

Class A Class A

= Generalized representation of objects-features:
Features Action plan d Features

Objects

.

: O,
<

O

© 2018 Aptima, Inc. 18



|

Scale up by filtering

a

—> planner —

|

|

analytic

cost

analytic

similar

|

/

» Planner can define what variables to collect or retain

x®a



Standard solutions

= Feature importance ranking
= Dimensionality reduction |

- PCA
— Locally linear embedding planner | (1
- Manifold learning |

= Weaknesses:

— These solutions are not adaptive to changing
environment (variables x) or activities (e.qg.,
attacks)

— Do not generalize well across domains

— Cannot be tailored to specific analytics analytic || analytic

— Cannot incorporate costs of data (collection, \ /
yl

analytic || analytic || analytic

retention), multiple providers (analytics
needing different data), or requests (user
needs)

Required workflow
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Requirements and solution ideas

= Requirements:

— Can be applied to 1 or more
analytics but with unknown
“internals”

= Treat analytics as black-box
— Can incorporate data costs

— Can adapt to changing
analytic, threat, or
environment

— Can transfer across analytics
or domains

— Can scale to large data sizes

= Addressed bY energy-based
variational planning with:

— Distribution via restricted
Boltzmann machine
= Simple encoding of pair-wise
variable dependencies/ constraints

= Easy gradient computation

— Variational bound
= Avoid costly marginalization

— Active inference

= Perception, control, learning
cycles

= Jterate between policy and
parameter (reward) learning

= Policy used to sample actions

— Scale up via amortized inference
& belief propagation

21



Planning model as “active inference”

= Planner treats analytic(s) as
black boxes

(hidden) state

= [teratively samples the space vy €
of actions (collection,
retention) to learn about the ob . world + analytic
analytic and the world servation Action
o€0 a€eA
= Integrates learnin
(pargmeters), ercgeption l planner T

(about state of the world),
and control (data action
selection)

: : —_
Learning =——> Perception <«— Control

= Equivalent to inverse
reinforcement learnings
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Planning model

= Define "outcome success” probability
pe(o = 1|x,a) = e—Co(x.a)

= Consider hidden trajectory dynamics of the “system”:
t={(xta"),t=1,..,T}

= Obtain policy:

m(at|xt) = Pr(at|xt, ot = 1)

= (Objective: minimize surprise

1

J©) =10 > ~Inpy(x) = Egpleg(x, D] +1n Y e~coa
D]
(x)ED (x,a)
= Variational lower bound
L(6,q) = Egy~pleg(x, )] = Exay~qlco(x, @)] + H|[q]

= Problem:
min max L(6,q) =E@y~plco(x, D] — Exa)~qlco(x,a)] + H|q]
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The form of “predictive” probability

= The probability distribution must be “simple”

= Use:
q(x,a) = q(x)q(alx)
= Then:
— Learn distribution g(x) from training data D
— Sample to generate points x
— Learn distribution g(a|x) using amortized inference
— Generate samples of points (x,a)
- Plug into parameter update



Representation

= Recall:
pe(0 = 1|x,a) = e Co(xa)
= Cost model:
co(x,a) = bTx®Oa + (x@a)'W (xOa)
= Can compute gradient of cy:
dcg(x,a) dcg(x,a)
o, ity Cowy
= Then parameter updates are simple (error between train data/prior
and predictions):

b; « b; —y(x; — Elx;a;])
wij < wi; =y (xix; — E[xia:x;05])
— In above expectations over marginals (no need for full distribution)

= The control distribution is a form of regularized optimal control, and
is solved using soft Q-learning
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Planner’s recap

Planner:
= Learns parameters 0 of cost function:

co(x,a)

Constructs data plan policy:

true data success/ m(at|x?)
features ~  state X' « fail event
x —> aq@ — Analytic ., 0 = Has intermediate variables as the
(x,a) probability of feature state:
‘ ' q(x)
= Uses parameters of state dynamics:
Policy: m(a|x) <+— Param0 < p(xt+1|xt at)
co(x,a)

= Uses the feedback of observed events o
— Received if can query analytic

— Difference between predicted and
generated values
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Why would this be scalable?

= Can constrain the pair-wise feature correlations to reduce
the # of parameters in (and updates of) the matrix W

= Can use alternative methods to estimate generative
probability

— Variational auto-encoders
— Variational Generative Adversarial networks

= All other updates are linear complexity



Results: sparsity of labeled data

= Local-Global (collaborative) = Neither local nor supervised
semi-supervised algorithm classifiers are effective when
achieved excellent performance training (labeled) data is sparse
(87% Pd, 85% Pf) when only 2% - Require 10x (e.g., 10% vs 1%)
of data points are labeled more labeled examples to match
- Matching performance of global performance of global & local-
algorithm global classifiers
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Results: sparsity of features

= Adaptive classifier is able to obtain = Random feature selection results is
improvement in classification rate by drastic reduction of detection quality
reducing the confusion introduced when significant # of features is
through redundant and noisy features removed
Recall Precision Fmeasure
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Accuracy of classification under different data access conditions
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Conclusions

= One of the key methods to improve cyber analytics’ performance has
always been development of more meaningful features

= Introduction of deep machine learning methods promises the
discovery of possibly more discriminative features, but requires
heavy raw data collection

= Current analytics are unable to process the data already being
collected, requiring smarter collection planning and retention

= Collection and retention problems can be formalized and solved using
similar principles
— Via adaptive planning
— Formal approximate solution resembling actor-critic and inverse RL
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