APTINA® Human-Centered Engineering

Adaptive Data Collection and Archiving Plans for Large-scale Cyber Networks

CLSAC

Session 3: Applications 2

Georgiy Levchuk

31 Oct 2018

Outline

- Challenges in processing cyber data
 - "Behavior"-based analytics
- Planning collection and retention as methods to scale up processing
- Energy/variational models as a general framework for scalable adaptive data management

Highlights

- Cyber analytics:
 - Map **normal** cyber-space
 - Detect attacks
 - Identify anomalies
- Types of reasoning:
 - Feature-based
 - Models from users (rules)
 or machine learning
 - Reason about **context**

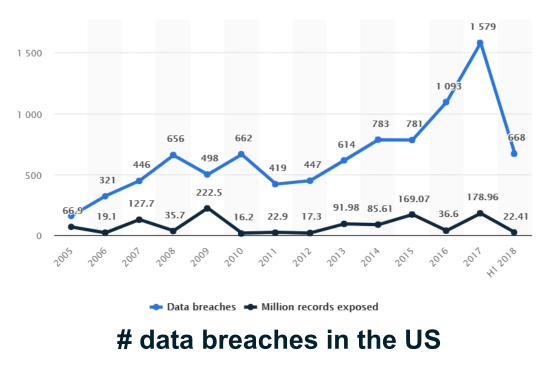
		011010101	
011010101010101	010101010	10111 91	010110110
0101010101110	101(31	01010.	101110110
0111101011010	01116.	1116	31111010
100101011110		- 4	101101
01101110110			`0110
011010101	a na sa sa é		010
101110111010	001110-		16
011010101010101	97'		0
010101010111P			
01111010110	.OLULA	918.	
	.11011010	1110	
loi attack	110101	117	
0110101010		10	
0101110111010	£1		
011010101010101	0101.		
0101010101110	101011.		
0111101011010	01110101.	line and	
100101011110	111011010	111011	a da secon
011011101101	011011010	111101101	11111
011010101010	101110101	101011010	1111010.
111010101010	110101011	011011110	101010101

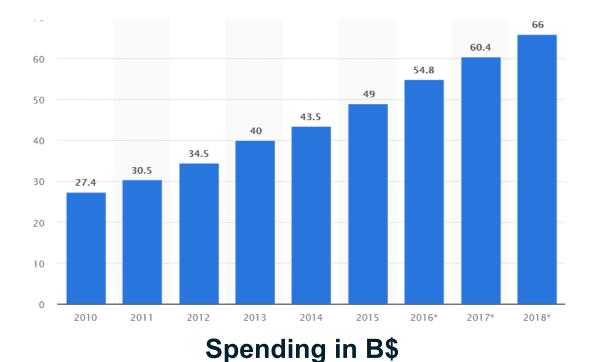
Challenges:

- Data is large
- Training is sparse
- Attacks & environment change

Challenges of scale

- # of cyber-security risks is increasing
- Spending on cyber-security is lagging behind





Challenges of scale

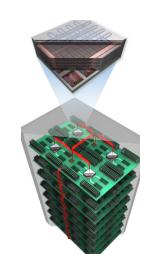
- # of cyber-security risks is increasing
- Spending on cyber-security is lagging behind

- Amount of data collected is also growing very rapidly, and cannot be sustained
 - % of data analyzed is shrinking

5

How to scale-up cyber analytics

- More/better compute resources
- Scalable algorithms
 - Better-than-linear complexity
- Data aggregation / compression
- Data sampling & filtering
 - Collection
 - Retention

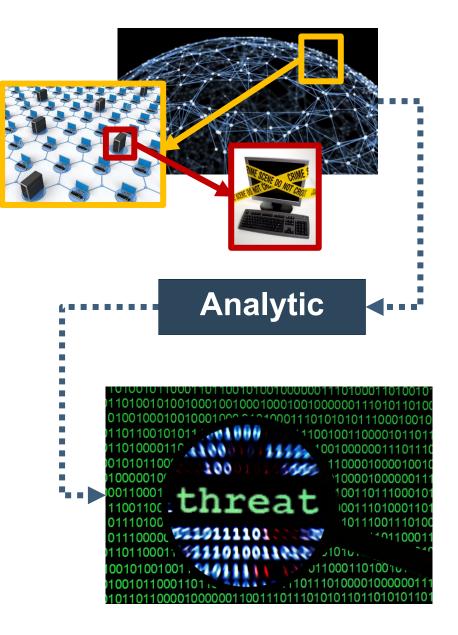


Large-scale HPC/ data centers New chips/ electronics

Data compression

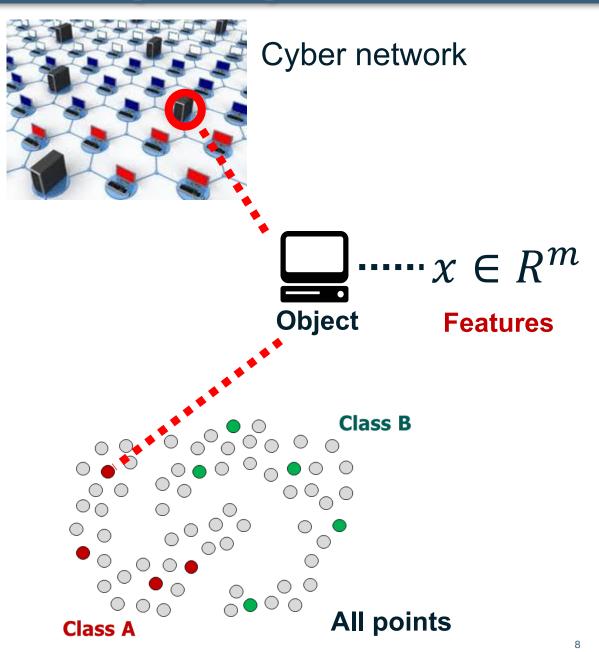
Problems solved by Cyber Analytics

- Formal problems types:
 - Ranking/anomaly detection
 - Node classification/labeling
 - Group detection
 - Joint contextual inference
 - POL learning
- Representative use-cases:
 - Activity classification
 - Botnet detection
 - Stepping-stone attacks
 - Malicious web traffic/attacks



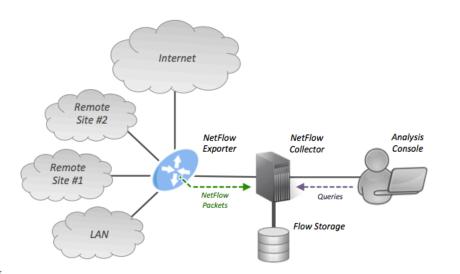
Abstracting cyber activity analysis

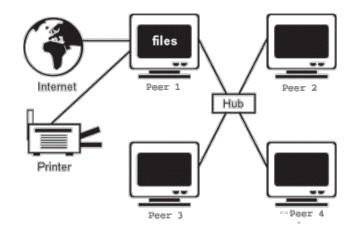
- Cyber data (raw):
 - Host (e.g., event/process log)
 - Network (e.g., flows)
- Objects of analysis:
 - User, IP, (sub)network, organization
- Features:
 - Behavior-based
 - Social, functional, application
 - Event-based
 - IDS, rule-based alerts
 - ML-based

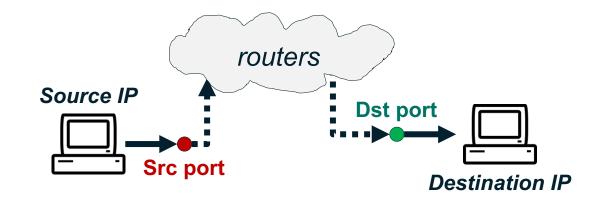


Cyber flow data

- Social information:
 - who talks to whom
- **Functional** information:
 - What applications / services are running on the machine (and use which ports)
- Collected at the edge or on local networks

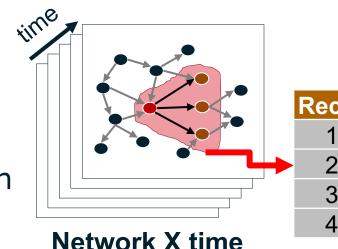


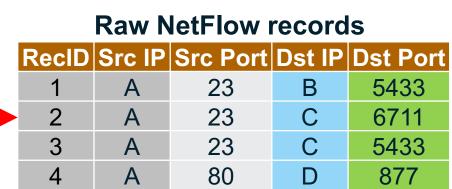


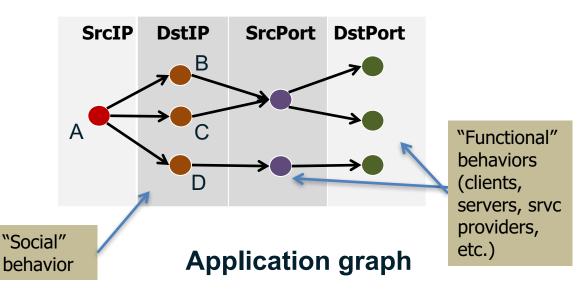


Example "behavioral" features

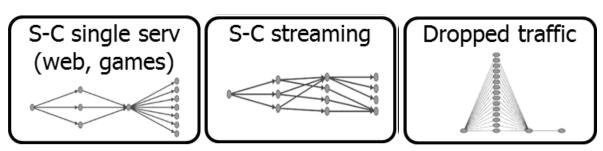
 Network-based flows can be analyzed to extract social, functional (application), and transport-level information via application graphs



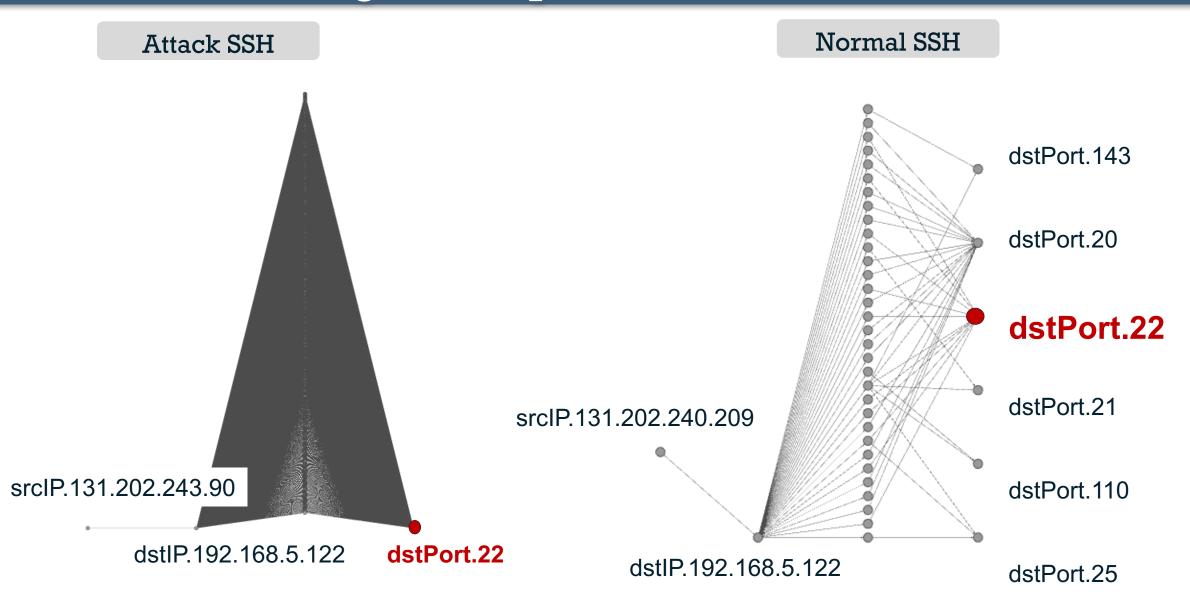




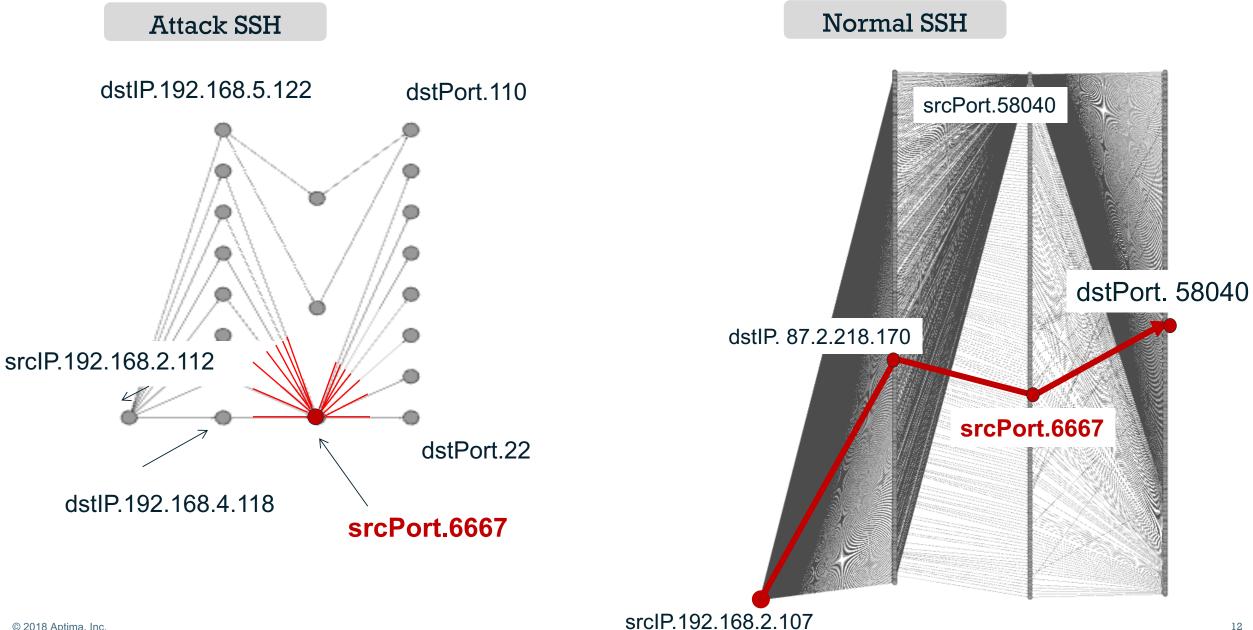
- Features are obtained using topological application graph patterns
 - E.g.:



Disambiguation power: Attack vs Normal

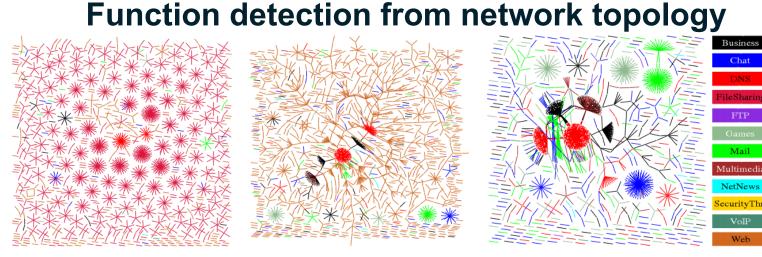


Disambiguation power: Attack vs Normal



Relational information matters

- Normal and abnormal activities can be detected by chaining packet clustering and analyzing topology of resulting IPto-IP networks
- How much network density do we need to preserve the detection rates?

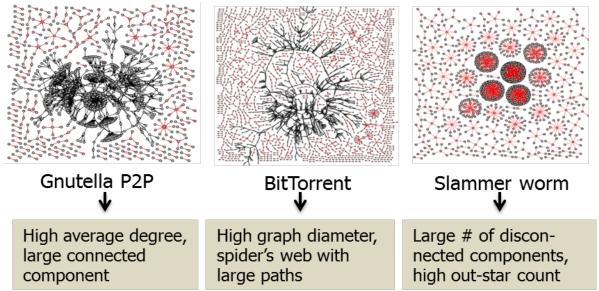


(a) all applications

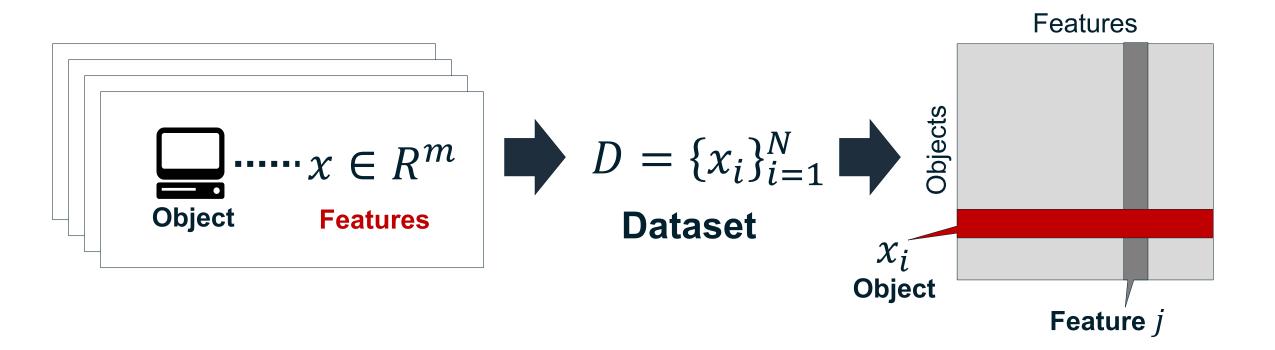
(b) FileSharing removed

(c) FileSharing and Web removed

Malware detection from network topology

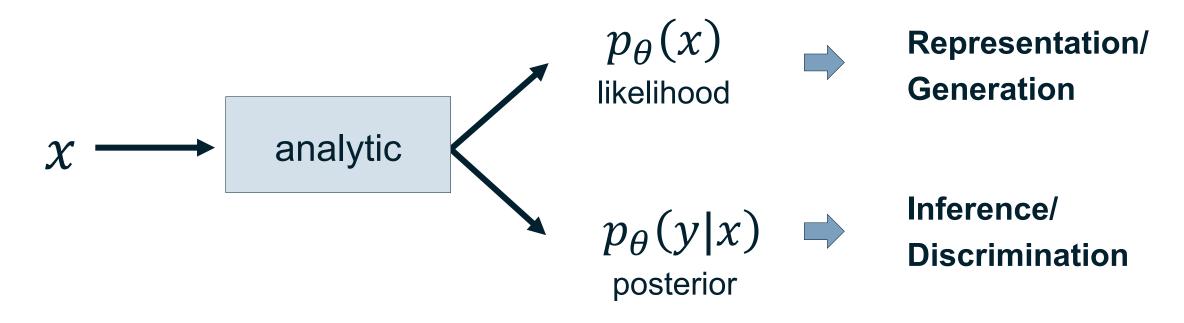


General analysis setup



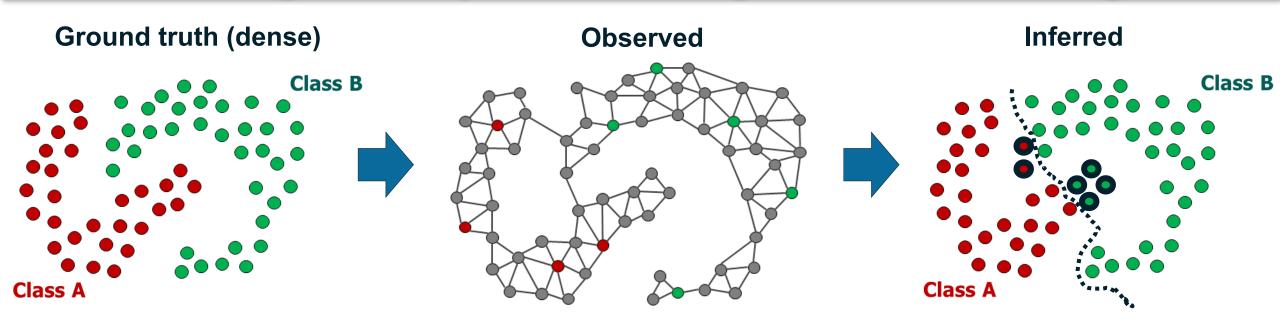
Dataset can contain very large # of points

General analysis problem



- Technical problems:
 - Learn parameters θ
 - Construct distribution $p_{\theta}(x)$ or $p_{\theta}(y|x)$
 - Develop approach to sample from $p_{\theta}(x)$

Example analytic: semi-supervised learning

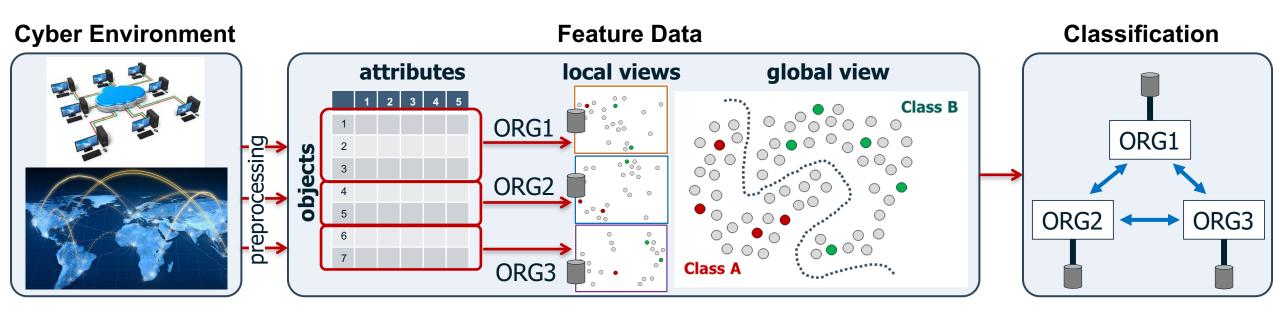


- Data contains very few labels
- Graph-based semi-supervised learning exploits structure between unlabeled points
- Label distribution obtained via message passing:

$$y = A \cdot y + z$$

- Closed-form solution: $y = (I - A)^{-1}z$
- Approximate solution via sparse matrix decomposition
 - Has limited scaling

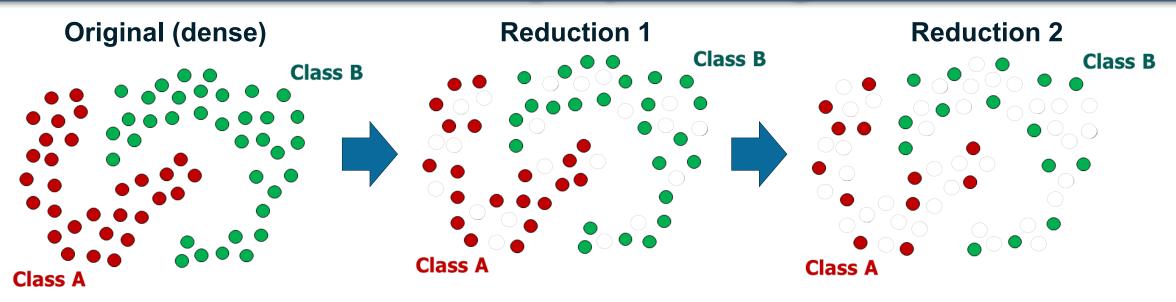
Distributed analysis workflow



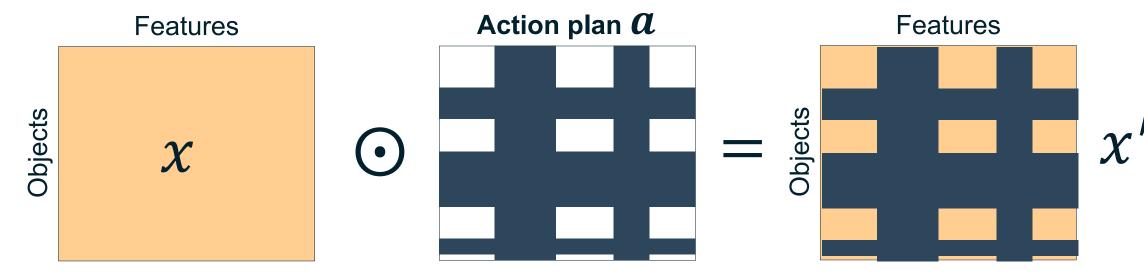
- Distributed processing challenge
 - Local-global data moves restricted
 - Global attacks are locally invisible
 - Analytics chaining/orchestration is ad-hoc

- Data management challenge
 - Multiple analytics have diverse data requirements & goals
 - Individual analytics rarely reason about other analytics

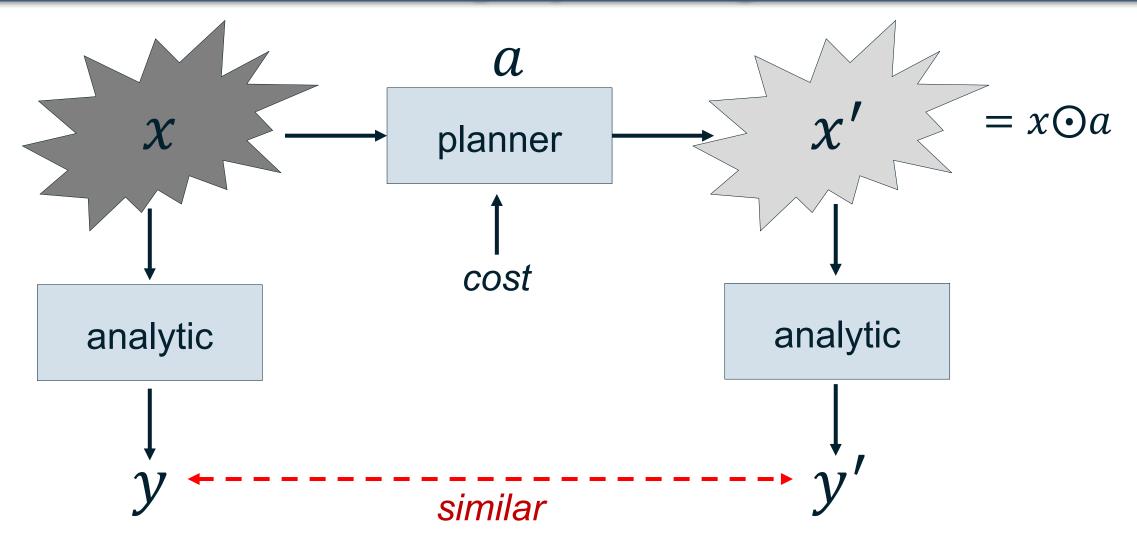
Scale up by filtering



Generalized representation of objects-features:



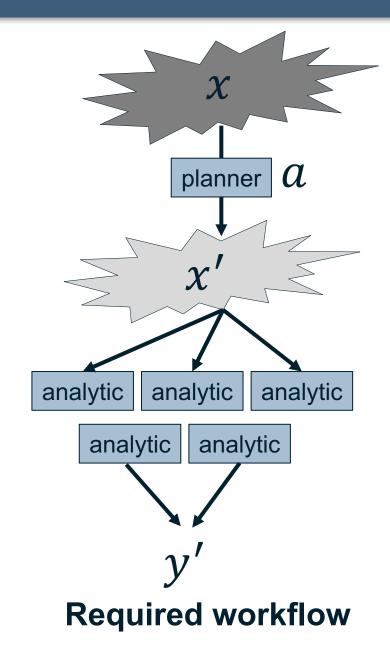
Scale up by filtering



Planner can define what variables to collect or retain

Standard solutions

- Feature importance ranking
- Dimensionality reduction
 - PCA
 - Locally linear embedding
 - Manifold learning
- Weaknesses:
 - These solutions are not adaptive to changing environment (variables x) or activities (e.g., attacks)
 - Do not generalize well across domains
 - Cannot be tailored to specific analytics
 - Cannot incorporate costs of data (collection, retention), multiple providers (analytics needing different data), or requests (user needs)



Requirements and solution ideas

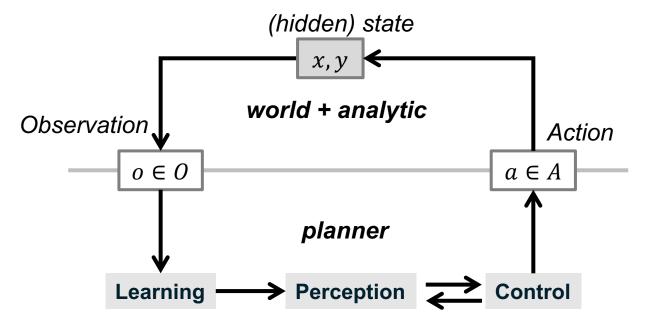
Requirements:

- Can be applied to 1 or more analytics but with unknown "internals"
 - Treat analytics as black-box
- Can incorporate data costs
- Can adapt to changing analytic, threat, or environment
- Can transfer across analytics or domains
- Can scale to large data sizes

- Addressed by energy-based variational planning with:
 - Distribution via restricted Boltzmann machine
 - Simple encoding of pair-wise variable dependencies/ constraints
 - Easy gradient computation
 - Variational bound
 - Avoid costly marginalization
 - Active inference
 - Perception, control, learning cycles
 - Iterate between policy and parameter (reward) learning
 - Policy used to sample actions
 - Scale up via amortized inference & belief propagation

Planning model as "active inference"

- Planner treats analytic(s) as black boxes
- Iteratively samples the space of actions (collection, retention) to learn about the analytic and the world
- Integrates learning (parameters), perception (about state of the world), and control (data action selection)
- Equivalent to inverse reinforcement learnings



Planning model

Define "outcome success" probability

 $p_{\theta}(o=1|x,a) = e^{-c_{\theta}(x,a)}$

Consider hidden trajectory dynamics of the "system":

$$\tau = \{ (x^t, a^t), t = 1, \dots, T \}$$

Obtain policy:

$$\pi(a^t | x^t) = \Pr(a^t | x^t, o^{t:T} = 1)$$

Objective: minimize surprise

$$J(\theta) = \frac{1}{|D|} \sum_{(x)\in D} -\ln p_{\theta}(x) = E_{(x)\sim D}[c_{\theta}(x,1)] + \ln \sum_{(x,a)} e^{-c_{\theta}(x,a)}$$

Variational lower bound

$$\mathcal{L}(\theta, q) = E_{(x)\sim D}[c_{\theta}(x, 1)] - E_{(x, a)\sim q}[c_{\theta}(x, a)] + H[q]$$

Problem:

$$\min_{\theta} \max_{q} \mathcal{L}(\theta, q) = E_{(x) \sim D}[c_{\theta}(x, 1)] - E_{(x, a) \sim q}[c_{\theta}(x, a)] + H[q]$$

The form of "predictive" probability

- The probability distribution must be "simple"
- Use:

q(x,a) = q(x)q(a|x)

- Then:
 - Learn distribution q(x) from training data D
 - Sample to generate points x
 - Learn distribution q(a|x) using amortized inference
 - Generate samples of points (*x*, *a*)
 - Plug into parameter update

Representation

Recall:

$$p_{\theta}(o=1|x,a) = e^{-c_{\theta}(x,a)}$$

Cost model:

$$c_{\theta}(x,a) = b^T x \odot a + (x \odot a)^T W(x \odot a)$$

• Can compute gradient of c_{θ} :

$$\frac{\partial c_{\theta}(x,a)}{\partial b_{i}} = x_{i}a_{i}, \ \frac{\partial c_{\theta}(x,a)}{\partial w_{ij}} = x_{i}a_{i}x_{j}a_{j}$$

 Then parameter updates are simple (error between train data/prior and predictions):

$$b_i \leftarrow b_i - \gamma(x_i - E[x_i a_i])$$

$$w_{ij} \leftarrow w_{ij} - \gamma(x_i x_j - E[x_i a_i x_j a_j])$$

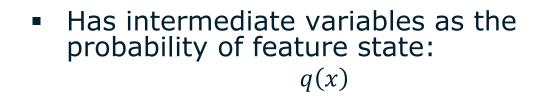
- In above expectations over marginals (no need for full distribution)

 The control distribution is a form of regularized optimal control, and is solved using soft Q-learning

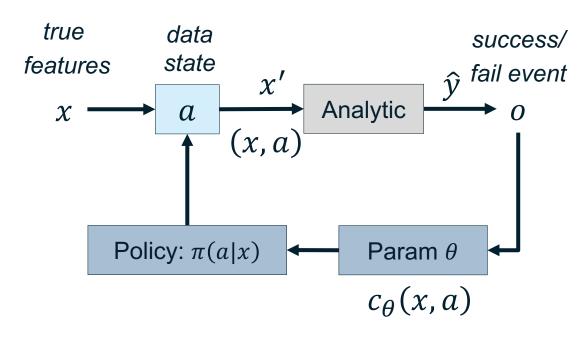
Planner's recap

Planner:

- Learns parameters θ of cost function: $c_{\theta}(x, a)$
- Constructs data plan policy: $\pi(a^t|x^t)$



- Uses parameters of state dynamics: $p(x^{t+1}|x^t, a^t)$
- Uses the feedback of observed events *o*
 - Received if can query analytic
 - Difference between predicted and generated values



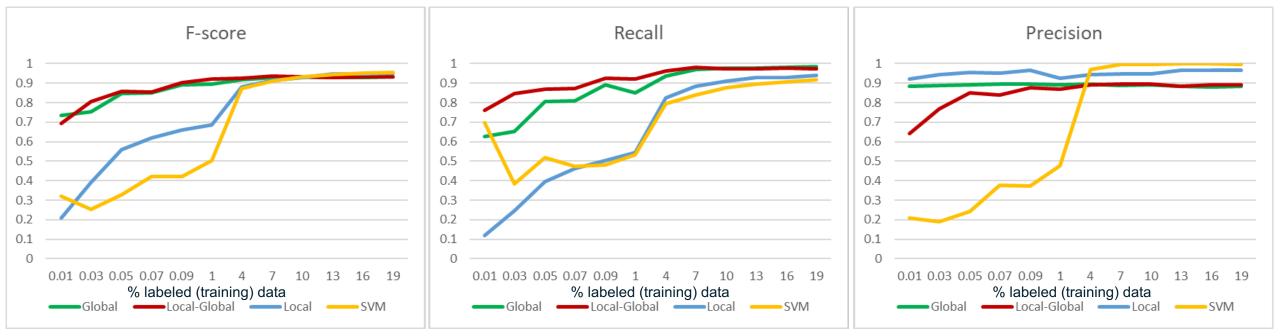
Why would this be scalable?

- Can constrain the pair-wise feature correlations to reduce the # of parameters in (and updates of) the matrix W
- Can use alternative methods to estimate generative probability
 - Variational auto-encoders
 - Variational Generative Adversarial networks
- All other updates are linear complexity

Results: sparsity of labeled data

- Local-Global (collaborative) semi-supervised algorithm achieved excellent performance (87% Pd, 85% Pf) when only ½% of data points are labeled
 - Matching performance of **global** algorithm

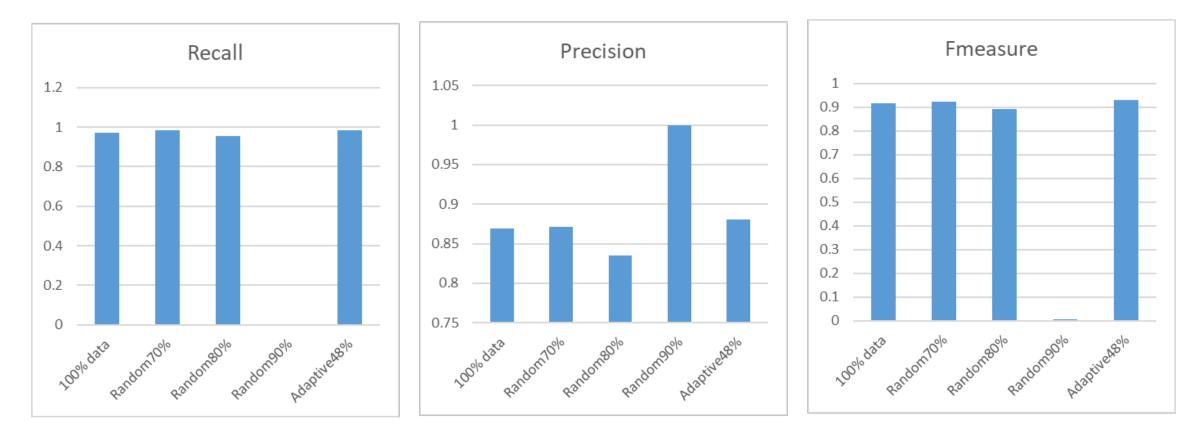
- Neither local nor supervised classifiers are effective when training (labeled) data is sparse
 - Require 10x (e.g., 10% vs 1%) more labeled examples to match performance of global & localglobal classifiers



UNSW-NB15 dataset: https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

Results: sparsity of features

- Adaptive classifier is able to obtain improvement in classification rate by reducing the confusion introduced through redundant and noisy features
- Random feature selection results is drastic reduction of detection quality when significant # of features is removed



Accuracy of classification under different data access conditions

Conclusions

- One of the key methods to improve cyber analytics' performance has always been development of more meaningful features
- Introduction of deep machine learning methods promises the discovery of possibly more **discriminative** features, but requires heavy raw data collection
- Current analytics are unable to process the data already being collected, requiring smarter collection planning and retention
- Collection and retention problems can be formalized and solved using similar principles
 - Via adaptive planning
 - Formal approximate solution resembling actor-critic and inverse RL

QUESTIONS?

Georgiy Levchuk |

georgiy@aptima.com 781-496-2467

Aptima, Inc. | www.aptima.com 12 Gill Street, Suite 1400 Woburn, MA 01801

© 2018 Aptima, Inc.