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Disclaimer 

• The views expressed in this talk are those of the 
speaker and not his employer. 

• If I say something “smart” or worthwhile: 
– Credit goes to the many smart people I work with. 

• If I say something stupid… 
–  It’s my own fault 

I work in Intel’s research labs.  I don’t build products.  
Instead, I get to poke into dark corners and think silly 

thoughts… just to make sure we don’t miss any great ideas.     
 

Hence, my views are by design far “off the roadmap”. 



Big Data Today    
common assumption … Big Data = Hadoop/Spark 
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What’s next for Big Data 
•  Hadoop/SPARK is great … it helped put Big Data on the map 
•  Comes from a time when we were just thrilled to “do” big data. 
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•  Hadoop/Spark design 
did not emphasize: 
– Performance for 

complex analytics. 
– Efficient utilization of 

the hardware 
– Programmability for 

anything beyond 
“embarrassingly 
parallel” applications. 

Challenge: What happens when Hadoop/Spark runs out of 
steam?  What comes next? 

Third party names are the property of their owners 



•  Consider	
  pa1ent	
  data	
  in	
  an	
  Intensive	
  Care	
  Unit	
  
(e.g.	
  MIMIC	
  II	
  data	
  set*)	
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Big	
  Data	
  in	
  the	
  real	
  world	
  
	
  

•  Demographic  
•  Caregiver 

notes 
•  Medical 

charts 
•  Lab test 

results 
•  Xray, MRI, 

etc. 

•  EKG traces 
•  Blood 

oxygen 
•  Blood 

pressure 
•  EEG traces 

The challenge … apply predictive analytics across all data … so we 
can show up to restart a heart before it stops beating!!! 

* MIMIC:  Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/  
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Big	
  Data	
  in	
  the	
  real	
  world	
  
Messy,	
  heterogeneous,	
  complex,	
  streaming	
  …	
  

•  Demographic  
•  Caregiver 

notes 
•  Medical 

charts 
•  Lab test 

results 
•  Xray, MRI, 

etc. 

•  EKG traces 
•  Blood 

oxygen 
•  Blood 

pressure 
•  EEG traces 

tables 

documents 

#images 

Arrays 

Arrays 

Time Series 

Time Series 

tables 

tables 

•  Consider	
  pa1ent	
  data	
  in	
  an	
  Intensive	
  Care	
  Unit	
  
(e.g.	
  MIMIC	
  II	
  data	
  set*)	
  

Time series and tabular data are stored in a DBMS.   
Other data?  Flat files 

# MIMC doesn’t include images.  We are talking to several groups to add an image database to our project  

* MIMIC:  Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/  



Analysis	
  of	
  published	
  MIMICII	
  papers	
  

•  Data	
  in	
  databases	
  is	
  used;	
  
data	
  in	
  files	
  is	
  not	
  
–  Data	
  in	
  files	
  is	
  nearly	
  
equivalent	
  to	
  dele1ng	
  the	
  
data	
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*Based on PhysioNet 
  MIMIC2 ICU data 
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Source: Vijay Gadepally of MIT Lincoln labs 

A disruptive idea: Match data to the data-store 
technology but present as a single Data Base 

Management system to the end-users … A disruptive 
idea we call Polystore.   
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Real Time DBMSs 

BigDAWG Query Language
and Data Federation layer

Visualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetching

SW Development
e.g, APIs for traditional languages, Julia, GraphMat, ML Base
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Stream 
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  An	
  integrated	
  polystore	
  system	
  

Third party names are the property of their owners 



10 10 

BigDAWG Query Language
and Data Federation layer

“Narrow Waist” 
Provides Portability

BigDawg:	
  An	
  integrated	
  polystore	
  system	
  

Let’s focus on 
this layer … the 

heart of 
BigDAWG 

Third party names are the property of their owners 



BigDAWG Data Federation 
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•  Two Key Components: 
– BigDAWG Query Language or BQL:  

–  the quest for “one query language to rule them all” 
– BigDAWG Data Federation API: 

–  Islands: a collection of data stores that share a data 
model and query language 

–  Shims: to translate queries between islands 
– Casts: to move data from one island to another 

High risk 
transformative 

research … many 
people think this is 

impossible.  

Based on ISTC research 
over the last 3 years, 

we think we know how 
to do this 

RDBMS = relational DBMS 
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ABSTRACT
This paper presents BigDAWG, a reference implementation of a
new architecture for “Big Data” applications. Such applications
not only call for large-scale analytics, but also for real-time stream-
ing support, smaller analytics at interactive speeds, data visualiza-
tion, and cross-storage-system queries. Guided by the principle that
“one size does not fit all” [13], we build on top of a variety of stor-
age engines, each designed for a specialized use case. To illustrate
the promise of this approach, we propose to demonstrate its effec-
tiveness on a hospital application using data from an intensive care
unit (ICU). This complex application serves the needs of doctors
and researchers and provides real-time support for streams of pa-
tient data. It will showcase novel approaches for querying across
multiple storage engines, data visualization, and scalable real-time
analytics.

1. INTRODUCTION
The Intel Science and Technology Center (ISTC) for Big Data

was founded in 2012. This center, with an open IP model, has fa-
cilitated building a community of researchers with a focus on Big
Data storage architectures, analytics, and visualizations while con-
sidering streaming and future disruptive technologies. The cen-
ter is now entering a “capstone” phase where it is implementing
a federated architecture to enable query processing over multiple
databases, where each of the underlying storage engines may have
a distinct data model. To tackle this challenge, the Big Data An-
alytics Working Group (BigDAWG) project seeks to explore chal-
lenges associated with building federated databases over multiple
data models [5, 10], specialized storage engines [13], and visual-
izations for Big Data [11].

1.1 MIMIC II Application
The working group first converged on a representative use case

to demonstrate the challenges inherent in applications that bring to-
gether the needs of many users and data sources. This use case is
based on the real intensive-care unit (ICU) dataset, MIMIC II [12]
(or “Multiparameter Intelligent Monitoring in Intensive Care (MIMIC)
II”).

MIMIC II is a publicly accessible dataset covering about 26,000
ICU admissions at Boston’s Beth Israel Deaconess Hospital. It con-
tains waveform data (up to 125 Hz measurements from bedside
devices), patient metadata (name, age, etc.), doctor’s and nurse’s
notes (text), lab results and prescriptions filled (both semi-structured
data). In practice, the hospital would store all of the historical data,
augmented by real-time feeds from current patients. Hence, this
system must support a variety of data types, standard SQL analyt-
ics (e.g., how many patients were given a particular drug), complex
analytics (e.g., compute the FFT of a patients waveform data and
then compare it to “normal”), text search (e.g., find patients who re-
sponded well to a particular drug or treatment), and real-time mon-
itoring (e.g., detect abnormal heart rhythms).

BigDAWG stores MIMIC II in a mixture of backends, includ-
ing Postgres, which stores the patient metadata, SciDB [4], which
stores the historical waveform data in a time-series (array) database,
S-Store [1], which stores a stream of device information, and Apache
Accumulo, which stores the associated text data in a key-value
store. In addition, we will evaluate several novel storage engines,
as outlined in Section 2.5. Each of these databases is good at part of
the MIMIC II workload, but none perform well for all of it. Hence,
this application is a good example of “one size does not fit all”.

To demonstrate this multi-faceted use case, we plan to offer the
following interfaces for user interaction:
Browsing: This is a pan/zoom interface whereby a user may browse
through the entire MIMIC II dataset, drilling down on demand to
access more detailed information. This interface will efficiently
display a top-level view (an icon for each group of the 26,000
patient-days) and flexibly enable users to probe the data at different
levels of granularity. To provide interactive response times, Big-
DAWG will prefetch data in anticipation of user movements. We
are presently researching this issue.
Exploratory Analysis Users will interactively explore interesting
relationships in medical data with the help of BigDAWG. Figure 2
is an example of this screen. Here, the system draws the user’s
attention to an unusual relationship in their selected patient pop-
ulation between race and hospital stay duration. This population
reverses the trend seen in the rest of the data. From this graph,
the user will have the opportunity to drill down into the source
data to determine what prompts this correlation. This interface will
demonstrate the features discussed in Section 2.2.
Complex Analytics: This screen enables a non-programmer to run
a variety of complex analytics, such as linear regression, fast fourier
transforms, and principal component analysis, on patient waveform
data. This interface will highlight the research challenges explored
in Section 2.4.
Text Analysis: From this window a user may run complex key-
word searches such as “find me the patients that have at least three
doctor’s report saying ‘very sick’ and are taking a particular drug”.
These non-trivial queries will showcase our novel facilities for query-
ing over multiple data models in Section 2.1.
Real-Time Monitoring: In this demo, the waveform data of cur-
rent patients will be stored in S-Store, a novel transactional stream
processing engine. We will have a monitoring display to show
this real-time patient data. In addition, we will have a workflow
that compares the incoming waveforms to reference ones, raising
an alert when the engine identifies significant differences between
the two. This interface will demonstrate the capabilities in Sec-
tions 2.3.

1.2 Guiding Tenets
By working on this demo, we have uncovered several guiding

principles for building the BigDAWG reference implementation.

1
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This paper presents BigDAWG, a reference implementation of a
new architecture for “Big Data” applications. Such applications
not only call for large-scale analytics, but also for real-time stream-
ing support, smaller analytics at interactive speeds, data visualiza-
tion, and cross-storage-system queries. Guided by the principle that
“one size does not fit all” [13], we build on top of a variety of stor-
age engines, each designed for a specialized use case. To illustrate
the promise of this approach, we propose to demonstrate its effec-
tiveness on a hospital application using data from an intensive care
unit (ICU). This complex application serves the needs of doctors
and researchers and provides real-time support for streams of pa-
tient data. It will showcase novel approaches for querying across
multiple storage engines, data visualization, and scalable real-time
analytics.

1. INTRODUCTION
The Intel Science and Technology Center (ISTC) for Big Data

was founded in 2012. This center, with an open IP model, has fa-
cilitated building a community of researchers with a focus on Big
Data storage architectures, analytics, and visualizations while con-
sidering streaming and future disruptive technologies. The cen-
ter is now entering a “capstone” phase where it is implementing
a federated architecture to enable query processing over multiple
databases, where each of the underlying storage engines may have
a distinct data model. To tackle this challenge, the Big Data An-
alytics Working Group (BigDAWG) project seeks to explore chal-
lenges associated with building federated databases over multiple
data models [5, 10], specialized storage engines [13], and visual-
izations for Big Data [11].

1.1 MIMIC II Application
The working group first converged on a representative use case

to demonstrate the challenges inherent in applications that bring to-
gether the needs of many users and data sources. This use case is
based on the real intensive-care unit (ICU) dataset, MIMIC II [12]
(or “Multiparameter Intelligent Monitoring in Intensive Care (MIMIC)
II”).

MIMIC II is a publicly accessible dataset covering about 26,000
ICU admissions at Boston’s Beth Israel Deaconess Hospital. It con-
tains waveform data (up to 125 Hz measurements from bedside
devices), patient metadata (name, age, etc.), doctor’s and nurse’s
notes (text), lab results and prescriptions filled (both semi-structured
data). In practice, the hospital would store all of the historical data,
augmented by real-time feeds from current patients. Hence, this
system must support a variety of data types, standard SQL analyt-
ics (e.g., how many patients were given a particular drug), complex
analytics (e.g., compute the FFT of a patients waveform data and
then compare it to “normal”), text search (e.g., find patients who re-
sponded well to a particular drug or treatment), and real-time mon-
itoring (e.g., detect abnormal heart rhythms).

BigDAWG stores MIMIC II in a mixture of backends, includ-
ing Postgres, which stores the patient metadata, SciDB [4], which
stores the historical waveform data in a time-series (array) database,
S-Store [1], which stores a stream of device information, and Apache
Accumulo, which stores the associated text data in a key-value
store. In addition, we will evaluate several novel storage engines,
as outlined in Section 2.5. Each of these databases is good at part of
the MIMIC II workload, but none perform well for all of it. Hence,
this application is a good example of “one size does not fit all”.

To demonstrate this multi-faceted use case, we plan to offer the
following interfaces for user interaction:
Browsing: This is a pan/zoom interface whereby a user may browse
through the entire MIMIC II dataset, drilling down on demand to
access more detailed information. This interface will efficiently
display a top-level view (an icon for each group of the 26,000
patient-days) and flexibly enable users to probe the data at different
levels of granularity. To provide interactive response times, Big-
DAWG will prefetch data in anticipation of user movements. We
are presently researching this issue.
Exploratory Analysis Users will interactively explore interesting
relationships in medical data with the help of BigDAWG. Figure 2
is an example of this screen. Here, the system draws the user’s
attention to an unusual relationship in their selected patient pop-
ulation between race and hospital stay duration. This population
reverses the trend seen in the rest of the data. From this graph,
the user will have the opportunity to drill down into the source
data to determine what prompts this correlation. This interface will
demonstrate the features discussed in Section 2.2.
Complex Analytics: This screen enables a non-programmer to run
a variety of complex analytics, such as linear regression, fast fourier
transforms, and principal component analysis, on patient waveform
data. This interface will highlight the research challenges explored
in Section 2.4.
Text Analysis: From this window a user may run complex key-
word searches such as “find me the patients that have at least three
doctor’s report saying ‘very sick’ and are taking a particular drug”.
These non-trivial queries will showcase our novel facilities for query-
ing over multiple data models in Section 2.1.
Real-Time Monitoring: In this demo, the waveform data of cur-
rent patients will be stored in S-Store, a novel transactional stream
processing engine. We will have a monitoring display to show
this real-time patient data. In addition, we will have a workflow
that compares the incoming waveforms to reference ones, raising
an alert when the engine identifies significant differences between
the two. This interface will demonstrate the capabilities in Sec-
tions 2.3.

1.2 Guiding Tenets
By working on this demo, we have uncovered several guiding

principles for building the BigDAWG reference implementation.
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Our	
  VLDB’2015	
  Demo	
  

Shim 

Myria 

MyriaQ 

SciDB 

MyriaX 

Hypotension predictor 

We have preliminary results targeting MyriaX, SciDB, S-store, D4M, graphulo 
and several visualization packages. 

Third party names are the property of their owners 



The	
  App:	
  Hypotension	
  Predictor	
  
•  Problem:	
  blood	
  pressure	
  drops	
  (hypotension)	
  àshock	
  à	
  death.	
  	
  Early	
  interven1on	
  is	
  key	
  

for	
  survival.	
  
•  Solu1on:	
  Machine	
  learning	
  over	
  heterogeneous	
  data	
  (from	
  MIMIC	
  II)	
  to	
  iden1fy	
  pa1ents	
  

about	
  to	
  suffer	
  from	
  a	
  severe	
  drop	
  in	
  blood	
  pressure?	
  
•  Algorithm	
  (from	
  Saeed	
  and	
  Mark*)	
  	
  build	
  a	
  classifier	
  ..	
  Haar	
  transforms	
  over	
  MIMICII	
  1me	
  

series	
  data,	
  summarize	
  as	
  histograms,	
  and	
  performs	
  a	
  K	
  nearest	
  neighbor	
  search.	
  	
  
Correlate	
  with	
  pa1ent	
  data.	
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Source: Magdalena Balazinska and Brandon Haynes, university of Washington. 
*A Novel Method for the Efficient Retrieval of Similar Multiparameter Physiologic Time Series Using Wavelet-Based Symbolic 
Representations.  Mohammed Saeed and Roger Mark, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839671/ 
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  be@er)	
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Real Time DBMSs 

BigDAWG Query Language
and Data Federation layer

Visualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetching

SW Development
e.g, APIs for traditional languages, Julia, GraphMat, ML Base

SciDB
Analytics
e.g., PLASMA, ML algos, plsh, GraphBLAS, other analytics packages

TupleWare

Hardware platforms
e.g., Cloud and cluster infrastructure, NVM simulator, 1000 core simulator, Xeon Phi, Xeon

Applications
e.g., Medical data, astronomy, twitter, urban sensing, IoT 

TileDBS-Store

“Narrow Waist” 
Provides Portability

MyriaX
Analytics DBMSs 

Spill 
Stream 

BigDawg:	
  An	
  integrated	
  polystore	
  system	
  

Third party names are the property of their owners 



System	
  Infrastructure	
  for	
  BigDAWG	
  
Research	
  

•  To	
  explore	
  BigDAWG,	
  we	
  need	
  to:	
  
–  Quickly	
  load	
  a	
  variety	
  of	
  DataBase	
  Management	
  Systems	
  
(DBMS)	
  

– Mix	
  HPC	
  (MPI)	
  jobs	
  with	
  tradi1onal	
  DBMS	
  jobs	
  
– Manage	
  everything	
  through	
  an	
  end-­‐user	
  driven	
  web	
  
interface	
  

•  Fortunately,	
  we	
  were	
  able	
  to	
  work	
  with	
  the	
  team	
  behind	
  the	
  
MIT	
  SuperCloud.	
  

Enabling	
  on-­‐demand	
  Database	
  compu3ng	
  with	
  MIT	
  SuperCloud	
  Database	
  management	
  
system,	
  Andrew	
  Prout,	
  Jeremy	
  Kepner,	
  Peter	
  Michaleas,	
  William	
  Arcand,	
  David	
  Bestor,	
  Bill	
  
Bergeron,	
  Chansup	
  Byun,	
  Lauren	
  Edwards,	
  Vijay	
  Gadepally,	
  Ma'hew	
  Hubbell,	
  Julie	
  Mullen,	
  
Antonio	
  Rosa,	
  Charles	
  Yee,	
  Albert	
  Reuther,	
  IEEE	
  High	
  Performance	
  Extreme	
  Compu1ng	
  
Conference	
  2015,	
  17	
  September	
  2015	
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Common Big Data Architecture 
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Source: Jeremy Kepner, MIT Lincoln Labs 
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Why a Database Management System? 

•  Remove requirement for dedicated servers, while avoiding 
virtual machines (VMs) 
–  In addition to performance concerns, VMs historically have caused 

problems for the timeout-based failure detection features of 
Accumulo 

•  Enable rapid creation of new databases 
•  Reduce waste of resources on idle databases 
•  Create a viable backup & restore strategy 
•  Ensure security concerns are appropriately addressed 
•  Empower the less IT savvy researchers & scientists with self-

service commands for common requests 
•  Integration with HPCC scheduler 

Database creation should be closer to a mkdir than a major IT project 

Source: Jeremy Kepner, MIT Lincoln Labs 
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Database Lifecycle 

Central  Storage 
(Lustre) 

Scheduler 

Compute Nodes 

Cluster 
Switch 

LAN Switch 

 
 

Web Portal 

Dynamic DNS 

Database User System Admin 

db_create accumulo -n 4 
testdb01 SecGroup 

db01 
DB Files 

DNS: 1.2.3.4 

Hadoop HDFS 

Apache 
Zookeeper 

• Master 
• Monitor 
• Garbage Collector 
• Tracer 
• Tablet Server 

Password: ABC123 Status: Started Status: Stopped 

db_stop testdb01 db_start testdb01 

Source: Jeremy Kepner, MIT Lincoln Labs 



MIT SuperCloud and BigDAWG 
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The SuperCloud lets researchers load multiple 
databases and Analytics jobs onto physical 

hardware through a simple web based interface. 
 

Vital for productivity when integrating results 
into BigDAWG from so many teams! 
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Real Time DBMSs 

BigDAWG Query Language
and Data Federation layer

Visualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetching

SW Development
e.g, APIs for traditional languages, Julia, GraphMat, ML Base

SciDB
Analytics
e.g., PLASMA, ML algos, plsh, GraphBLAS, other analytics packages
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Hardware platforms
e.g., Cloud and cluster infrastructure, NVM simulator, 1000 core simulator, Xeon Phi, Xeon

Applications
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Spill 
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Arrays	
  in	
  Big	
  Data	
  problems	
  
•  Data	
  is	
  olen	
  naturally	
  considered	
  as	
  an	
  array:	
  

–  An	
  object	
  with	
  mul1ple	
  dimensions	
  (e.g.	
  2)	
  
–  The	
  dimensions	
  define	
  a	
  logical	
  coordinate	
  space	
  	
  
–  A	
  cell	
  “exists”	
  at	
  each	
  point	
  in	
  the	
  coordinate	
  space.	
  
–  A	
  cell	
  has	
  one	
  or	
  more	
  a'ributes	
  which	
  collec1vely	
  define	
  the	
  
“value”	
  at	
  that	
  cell.	
  

•  Data	
  is	
  usually	
  sparse	
  
–  E.G.	
  the	
  AIS	
  data	
  set	
  
showing	
  ship	
  loca1ons	
  
as	
  a	
  func1on	
  of	
  1me	
  in	
  
and	
  around	
  U.S.	
  waters	
  



TileDB	
  a	
  new	
  array	
  data	
  storage	
  manager:	
  
op1mized	
  for	
  Sparse	
  Arrays	
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Logical	
  representa3on	
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Tile: Atomic unit of processing 
Segment: Atomic unit of I/O 

segment 

Manage array storage as tiles of different shape/size in the 
index space, but with ~equal number of non-empty cells 



Joint	
  Genotyping	
  Benchmark*	
  

# samples 

Tim
e (Seconds) 

BCF: GATK SW 
Optimized by 

Intel 

Intel® Xeon® E5 2697 v2 CPU, 12 cores, dual socket, 128 GB RAM, CentOS6.6, Western 
Digital 4 TB WD4000F9YZ-0 as a ZFS RAID0 pool.  Single thread/core results. 
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*Benchmark jointly developed by Intel and the Broad Genomics Institute. Each sample is 
10MB.  Compute correlations across samples at ~5000 positions.   



Real Time DBMSs 

BigDAWG Query Language
and Data Federation layer

Visualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetching

SW Development
e.g, APIs for traditional languages, Julia, GraphMat, ML Base

SciDB
Analytics
e.g., PLASMA, ML algos, plsh, GraphBLAS, other analytics packages

TupleWare

Hardware platforms
e.g., Cloud and cluster infrastructure, NVM simulator, 1000 core simulator, Xeon Phi, Xeon

Applications
e.g., Medical data, astronomy, twitter, urban sensing, IoT 

TileDBS-Store

“Narrow Waist” 
Provides Portability

MyriaX
Analytics DBMSs 

Spill 
Stream 

BigDawg:	
  An	
  integrated	
  polystore	
  system	
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Programming	
  languages	
  in	
  Academia	
  

26 Source: http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext 

The academic world has moved into 
“high productivity” languages. 

 
Maybe HPC should give them  a try? 

Third party names are the property of their owners 



What	
  is	
  Julia?	
  
•  Julia	
  is	
  yet	
  another	
  new	
  language!!	
  
•  Started	
  in	
  2009	
  in	
  Alan	
  Edelman's	
  group	
  at	
  MIT.	
  

•  The	
  problem	
  is	
  …	
  do	
  we	
  really	
  need	
  a	
  new	
  language?	
  …	
  computer	
  
scien1sts	
  spend	
  more	
  1me	
  crea1ng	
  new	
  languages	
  than	
  making	
  
exis1ng	
  languages	
  actually	
  work.	
  

•  But	
  people	
  I	
  know	
  and	
  respect	
  have	
  convinced	
  me	
  to	
  taka	
  a	
  close	
  
look	
  at	
  Julia	
  
–  It	
  is	
  rela1vely	
  easy	
  to	
  learn	
  
–  A	
  non-­‐viral	
  open	
  source	
  license	
  (MIT	
  License)	
  so	
  corporate	
  types	
  can	
  play	
  

with	
  it.	
  
–  A	
  large	
  and	
  growing	
  community	
  …	
  over	
  350	
  contributors	
  since	
  it	
  started	
  in	
  

2009	
  
Third Party names are the property of their owners 



What	
  is	
  Julia?	
  
•  An	
  excellent	
  founda3on	
  for	
  programming	
  research.	
  

–  Core	
  func1onality	
  of	
  Julia	
  is	
  wri'en	
  in	
  Julia.	
  	
  	
  
–  Benefits	
  from	
  large	
  LLVM	
  eco-­‐system.	
  
–  Introspec3on:	
  	
  Exposes	
  transforma1ons	
  from	
  high	
  

level	
  code	
  into	
  na1ve	
  assembly	
  code	
  …	
  so	
  you	
  can	
  
manipulate	
  them	
  inside	
  Julia	
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Parse source into AST 

Lower AST 

Type Inference 

Build LLVM Intermediate Rep. 

Emit machine code 

code_lowered(fib,(Int32))	
  	
  

code_typed(fib,(Int32))	
  	
  

code_llvm(fib,(Int32))	
  	
  

code_native(fib,(Int32))	
  	
  



The	
  benefits	
  of	
  introspec1on	
  

•  Prospect compiler tool 
generates optimized C code 
from Julia Source: 

•  10-170 speedup over Julia 
due to: 
•  Parallelization 
•  Loop fusion 
•  Domain specific 

optimizations 
•  vectorization 

•  Using the flexible Julia framework, a group at Intel created C backend 
integrated with Julia (Prospect … Open Source release Q4’2015) 

Source: Tatiana Shpeisman of Intel 

Running on a server with two Intel® Xeon® E5-2690v2 processors at 3 Ghz, 128GB RAM  
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LLVM 
PSE: our Julia based Problem Solving Environment … of 
which Prospect is a key component.  



The	
  benefits	
  of	
  introspec1on	
  

•  Prospect compiler tool 
generates optimized C code 
from Julia Source: 

•  10-170 speedup over Julia 
due to: 
•  Parallelization 
•  Loop fusion 
•  Domain specific 

optimizations 
•  vectorization 

•  Using the flexible Julia framework, a group at Intel created C backend 
integrated with Julia (Prospect … Open Source release Q4’2015) 

Source: Tatiana Shpeisman of Intel 

Running on a server with two Intel® Xeon® E5-2690v2 processors at 3 Ghz, 128GB RAM  
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What	
  is	
  Julia?	
  
•  It	
  is	
  a	
  dynamic	
  

scrip1ng	
  language	
  
(like	
  python	
  or	
  
perl)	
  

•  Syntax	
  natural	
  to	
  
people	
  working	
  
with	
  Math	
  plus	
  a	
  
rich	
  set	
  of	
  built	
  in,	
  
standard	
  
opera1ons	
  (Like	
  
Matlab	
  or	
  R).	
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What	
  is	
  Julia?	
  

function	
  fib(n)	
  
	
  	
  	
  	
  if	
  n<2	
  
	
  	
  	
  	
  	
  	
  	
  	
  n	
  
	
  	
  	
  	
  else	
  
	
  	
  	
  	
  	
  	
  	
  	
  fib(n-­‐1)+fib(n-­‐2)	
  
	
  	
  	
  	
  end	
  
end	
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function definition 

fib(n)	
  =	
  n<2	
  ?	
  n	
  :	
  fib(n-­‐1)+fib(n-­‐2)	
   one line shorthand 

implicit return value 

no need to declare parameter types 

time = O(1.618n) 

Source: Arch Robison of Intel 

A general purpose programming 
language with sophisticated dataflow 

type discovery  

With a very compact syntax. 



What	
  is	
  Julia?	
  
function	
  fibfast(n)	
  
	
  	
  	
  	
  @assert	
  n>=1	
  
	
  	
  	
  	
  a	
  =	
  zero(n)	
  
	
  	
  	
  	
  b	
  =	
  one(n)	
  
	
  	
  	
  	
  for	
  i=2:n	
  
	
  	
  	
  	
  	
  	
  	
  	
  (a,b)	
  =	
  (b,a+b)	
  
	
  	
  	
  	
  end	
  
	
  	
  	
  	
  b	
  
end	
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Macro 

Loop from 2 to n inclusive 

Set local variable a to zero of same type as n 

Set local variable b to one of same type as n 

tuple construction and destructuring 

implicit return value 

time = O(n) 

Source: Arch Robison of Intel 



What	
  is	
  Julia?	
  
•  Mul1ple	
  

dispatch	
  
•  Dynamic	
  

polymorphism	
  
	
  

Third Party names are the property of their owners 

Since ^ is generically 
represented in terms of *, this 
becomes the composition of 

functions (sin(sin(x)) … which is 
what Gauss wanted it to be. 



Distributed	
  Memory	
  Parallelism	
  
function	
  fibpar(n)	
  
	
  	
  	
  	
  if	
  n<30	
  
	
  	
  	
  	
  	
  	
  	
  	
  fib(n)	
  
	
  	
  	
  	
  else	
  
	
  	
  	
  	
  	
  	
  	
  	
  x	
  =	
  @spawn	
  fibpar(n-­‐1)	
  
	
  	
  	
  	
  	
  	
  	
  	
  y	
  =	
  fibpar(n-­‐2)	
  
	
  	
  	
  	
  	
  	
  	
  	
  y+fetch(x)	
  
	
  	
  	
  	
  end	
  
end	
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Run in parallel 

Wait and retrieve result 

•  Each process is single-threaded. 

•  Julia coroutine mechanism simplifies 
writing inter-process synchronization code. 

•  Also has distributed array objects. 

Source: Arch Robison of Intel 



Shared	
  Memory	
  Parallelism	
  

36 

Kiran Pamnany of Intel has been experimenting with adding 
threading to Julia … with some exciting preliminary results 

Third Party names are the property of their owners 



Julia	
  and	
  TileDB	
  

•  Conjugate	
  transpose	
  is	
  one	
  of	
  5	
  core	
  methods	
  
needed	
  for	
  Julia’s	
  generic	
  itera1ve	
  solvers	
  
framework.	
  	
  We	
  have	
  leveraged	
  TileDB	
  and	
  
Julia	
  to	
  prototype	
  out-­‐of-­‐core	
  linear	
  algebra	
  
opera1ons	
  around	
  these	
  generic	
  abstrac1ons.	
  

Third Party names are the property of their owners 

TileDB:	
  a	
  persistence	
  layer	
  for	
  
out-­‐of-­‐core	
  computa1ons.	
  

Conjugate	
  transpose	
  (A’)	
  with	
  TileDB’s	
  
Arrays,	
  TileDB’s	
  generic	
  Array	
  Cell	
  types,	
  

and	
  flexible	
  iterator	
  framework.	
  

Source: Jake Bolewski and Stavros Papadopoulos 



Summary	
  
•  If	
  “One	
  size	
  does	
  not	
  fit	
  all™”	
  …	
  Then	
  we	
  need	
  Polystore.	
  

•  Produc1vity	
  demands	
  a	
  single	
  interface	
  to	
  mul1ple	
  stores:	
  
–  BigDAWG	
  API	
  to	
  1e	
  Islands	
  together	
  
–  BQL:	
  the	
  Dream	
  of	
  one	
  Algebra	
  to	
  rule	
  them	
  all	
  

•  TileDB:	
  The	
  advantage	
  of	
  a	
  domain	
  specific	
  storage	
  engine.	
  

•  Julia:	
  maybe	
  its	
  1me	
  to	
  consider	
  a	
  new	
  language?	
  	
  	
  

Trademark held by Mike Stonebraker 

Work in 
progress 

I’m skeptical, 
but willing to 
be convinced 


