
Polystore,	
 Julia,	
 and	
 produc3vity	

in	
 a	
 Big	
 Data	
 world	

Tim	
 Ma'son,	
 Intel	
 labs	

1mothy.g.ma'son@intel.com	

Intel-­‐PI	
 for	
 the	
 Big	
 Data	
 “Intel	
 Science	
 and	
 Technology	
 Center”	

People I stole content from for this talk: Stavros Papadopoulos, Jake Bolewski,
Mike Stonebraker, Vijay Gadepally, Bill Howe, Magda Balazinska, Jennie Duggan,
Aaron Elmore, Sam Madden, Jeremy Kepner, Kiran Pamnany, and Tatiana Shpeisman.

Legal Disclaimer & Optimization Notice
•  INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

•  Software and workloads used in performance tests may have been optimized for performance only
on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to
any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products.

•  Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations
in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

3 3

Disclaimer

• The views expressed in this talk are those of the
speaker and not his employer.

• If I say something “smart” or worthwhile:
– Credit goes to the many smart people I work with.

• If I say something stupid…
–  It’s my own fault

I work in Intel’s research labs. I don’t build products.
Instead, I get to poke into dark corners and think silly

thoughts… just to make sure we don’t miss any great ideas.

Hence, my views are by design far “off the roadmap”.

Big Data Today
common assumption … Big Data = Hadoop/Spark

4

FILESYSTEMS AND NOSQL STORAGE

HW PLATFORM

APACHE HADOOP APACHE SPARK

DATA WRANGLING

MACHINE LEARNING AND
STATISTICS

Graphical
Algorithms

Classical
Algorithms

Graph Construction
Tools

Useful String
Manipulation

Useful Math
Operators

“DATA SCIENCE” API

Intel Analytics Toolkit

Unified UI’s
 across

the workflow

Easier
feature

& model
creation

Fully scalable
throughout

Multiple
data

primitives

Optimized
for IACloud &

On-Prem

Python
Libraries

3rd Party
GUIs/SDKs

Viz
Tools

Future
Libraries

BI Connectors
Query

Interfaces ...

Third party names are the property of their owners

What’s next for Big Data
•  Hadoop/SPARK is great … it helped put Big Data on the map
•  Comes from a time when we were just thrilled to “do” big data.

5

•  Hadoop/Spark design
did not emphasize:
– Performance for

complex analytics.
– Efficient utilization of

the hardware
– Programmability for

anything beyond
“embarrassingly
parallel” applications.

Challenge: What happens when Hadoop/Spark runs out of
steam? What comes next?

Third party names are the property of their owners

•  Consider	
 pa1ent	
 data	
 in	
 an	
 Intensive	
 Care	
 Unit	

(e.g.	
 MIMIC	
 II	
 data	
 set*)	

6

Big	
 Data	
 in	
 the	
 real	
 world	

	

•  Demographic
•  Caregiver

notes
•  Medical

charts
•  Lab test

results
•  Xray, MRI,

etc.

•  EKG traces
•  Blood

oxygen
•  Blood

pressure
•  EEG traces

The challenge … apply predictive analytics across all data … so we
can show up to restart a heart before it stops beating!!!

* MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/

7

Big	
 Data	
 in	
 the	
 real	
 world	

Messy,	
 heterogeneous,	
 complex,	
 streaming	
 …	

•  Demographic
•  Caregiver

notes
•  Medical

charts
•  Lab test

results
•  Xray, MRI,

etc.

•  EKG traces
•  Blood

oxygen
•  Blood

pressure
•  EEG traces

tables

documents

#images

Arrays

Arrays

Time Series

Time Series

tables

tables

•  Consider	
 pa1ent	
 data	
 in	
 an	
 Intensive	
 Care	
 Unit	

(e.g.	
 MIMIC	
 II	
 data	
 set*)	

Time series and tabular data are stored in a DBMS.
Other data? Flat files

MIMC doesn’t include images. We are talking to several groups to add an image database to our project

* MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/

Analysis	
 of	
 published	
 MIMICII	
 papers	

•  Data	
 in	
 databases	
 is	
 used;	

data	
 in	
 files	
 is	
 not	

–  Data	
 in	
 files	
 is	
 nearly	

equivalent	
 to	
 dele1ng	
 the	

data	

Data Volume
TB GB PB

N
u

m
b

er
 o

f
P

ap
er

s

100

10

1 files*

databases*

*Based on PhysioNet
 MIMIC2 ICU data

1000
10

0x

1000x

Source: Vijay Gadepally of MIT Lincoln labs

A disruptive idea: Match data to the data-store
technology but present as a single Data Base

Management system to the end-users … A disruptive
idea we call Polystore.

9 9

Real Time DBMSs

BigDAWG Query Language
and Data Federation layer

Visualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetching

SW Development
e.g, APIs for traditional languages, Julia, GraphMat, ML Base

SciDB
Analytics
e.g., PLASMA, ML algos, plsh, GraphBLAS, other analytics packages

TupleWare

Hardware platforms
e.g., Cloud and cluster infrastructure, NVM simulator, 1000 core simulator, Xeon Phi, Xeon

Applications
e.g., Medical data, astronomy, twitter, urban sensing, IoT

TileDBS-Store

“Narrow Waist”
Provides Portability

MyriaX
Analytics DBMSs

Spill
Stream

BigDawg:	
 An	
 integrated	
 polystore	
 system	

Third party names are the property of their owners

10 10

BigDAWG Query Language
and Data Federation layer

“Narrow Waist”
Provides Portability

BigDawg:	
 An	
 integrated	
 polystore	
 system	

Let’s focus on
this layer … the

heart of
BigDAWG

Third party names are the property of their owners

BigDAWG Data Federation

11

•  Two Key Components:
– BigDAWG Query Language or BQL:

–  the quest for “one query language to rule them all”
– BigDAWG Data Federation API:

–  Islands: a collection of data stores that share a data
model and query language

–  Shims: to translate queries between islands
– Casts: to move data from one island to another

High risk
transformative

research … many
people think this is

impossible.

Based on ISTC research
over the last 3 years,

we think we know how
to do this

RDBMS = relational DBMS

A Demonstration of the BigDAWG Multi-Database System

A. Elmore

Univ. of Chicago

J. Duggan

Northwestern

M. Stonebraker

MIT

M. Balazinska

Univ. of Wash.

U. Cetintemel

Brown

V. Gadepally

MIT-LL

J. Heer

Univ. of Wash.

B. Howe

Univ. of Wash.

J. Kepner

MIT-LL

T. Kraska

Brown

S. Madden

MIT

D. Maier

Portland St U.

T. Mattson

Intel

S. Papadopoulis

Intel / MIT

J. Parkhurst

Intel

N. Tatbul

Intel / MIT

M. Vartek

MIT

S. Zdonik

Brown

ABSTRACT
This paper presents BigDAWG, a reference implementation of a
new architecture for “Big Data” applications. Such applications
not only call for large-scale analytics, but also for real-time stream-
ing support, smaller analytics at interactive speeds, data visualiza-
tion, and cross-storage-system queries. Guided by the principle that
“one size does not fit all” [13], we build on top of a variety of stor-
age engines, each designed for a specialized use case. To illustrate
the promise of this approach, we propose to demonstrate its effec-
tiveness on a hospital application using data from an intensive care
unit (ICU). This complex application serves the needs of doctors
and researchers and provides real-time support for streams of pa-
tient data. It will showcase novel approaches for querying across
multiple storage engines, data visualization, and scalable real-time
analytics.

1. INTRODUCTION
The Intel Science and Technology Center (ISTC) for Big Data

was founded in 2012. This center, with an open IP model, has fa-
cilitated building a community of researchers with a focus on Big
Data storage architectures, analytics, and visualizations while con-
sidering streaming and future disruptive technologies. The cen-
ter is now entering a “capstone” phase where it is implementing
a federated architecture to enable query processing over multiple
databases, where each of the underlying storage engines may have
a distinct data model. To tackle this challenge, the Big Data An-
alytics Working Group (BigDAWG) project seeks to explore chal-
lenges associated with building federated databases over multiple
data models [5, 10], specialized storage engines [13], and visual-
izations for Big Data [11].

1.1 MIMIC II Application
The working group first converged on a representative use case

to demonstrate the challenges inherent in applications that bring to-
gether the needs of many users and data sources. This use case is
based on the real intensive-care unit (ICU) dataset, MIMIC II [12]
(or “Multiparameter Intelligent Monitoring in Intensive Care (MIMIC)
II”).

MIMIC II is a publicly accessible dataset covering about 26,000
ICU admissions at Boston’s Beth Israel Deaconess Hospital. It con-
tains waveform data (up to 125 Hz measurements from bedside
devices), patient metadata (name, age, etc.), doctor’s and nurse’s
notes (text), lab results and prescriptions filled (both semi-structured
data). In practice, the hospital would store all of the historical data,
augmented by real-time feeds from current patients. Hence, this
system must support a variety of data types, standard SQL analyt-
ics (e.g., how many patients were given a particular drug), complex
analytics (e.g., compute the FFT of a patients waveform data and
then compare it to “normal”), text search (e.g., find patients who re-
sponded well to a particular drug or treatment), and real-time mon-
itoring (e.g., detect abnormal heart rhythms).

BigDAWG stores MIMIC II in a mixture of backends, includ-
ing Postgres, which stores the patient metadata, SciDB [4], which
stores the historical waveform data in a time-series (array) database,
S-Store [1], which stores a stream of device information, and Apache
Accumulo, which stores the associated text data in a key-value
store. In addition, we will evaluate several novel storage engines,
as outlined in Section 2.5. Each of these databases is good at part of
the MIMIC II workload, but none perform well for all of it. Hence,
this application is a good example of “one size does not fit all”.

To demonstrate this multi-faceted use case, we plan to offer the
following interfaces for user interaction:
Browsing: This is a pan/zoom interface whereby a user may browse
through the entire MIMIC II dataset, drilling down on demand to
access more detailed information. This interface will efficiently
display a top-level view (an icon for each group of the 26,000
patient-days) and flexibly enable users to probe the data at different
levels of granularity. To provide interactive response times, Big-
DAWG will prefetch data in anticipation of user movements. We
are presently researching this issue.
Exploratory Analysis Users will interactively explore interesting
relationships in medical data with the help of BigDAWG. Figure 2
is an example of this screen. Here, the system draws the user’s
attention to an unusual relationship in their selected patient pop-
ulation between race and hospital stay duration. This population
reverses the trend seen in the rest of the data. From this graph,
the user will have the opportunity to drill down into the source
data to determine what prompts this correlation. This interface will
demonstrate the features discussed in Section 2.2.
Complex Analytics: This screen enables a non-programmer to run
a variety of complex analytics, such as linear regression, fast fourier
transforms, and principal component analysis, on patient waveform
data. This interface will highlight the research challenges explored
in Section 2.4.
Text Analysis: From this window a user may run complex key-
word searches such as “find me the patients that have at least three
doctor’s report saying ‘very sick’ and are taking a particular drug”.
These non-trivial queries will showcase our novel facilities for query-
ing over multiple data models in Section 2.1.
Real-Time Monitoring: In this demo, the waveform data of cur-
rent patients will be stored in S-Store, a novel transactional stream
processing engine. We will have a monitoring display to show
this real-time patient data. In addition, we will have a workflow
that compares the incoming waveforms to reference ones, raising
an alert when the engine identifies significant differences between
the two. This interface will demonstrate the capabilities in Sec-
tions 2.3.

1.2 Guiding Tenets
By working on this demo, we have uncovered several guiding

principles for building the BigDAWG reference implementation.

1

Our	
 VLDB’2015	
 Demo	

A Demonstration of the BigDAWG Multi-Database System

A. Elmore

Univ. of Chicago

J. Duggan

Northwestern

M. Stonebraker

MIT

M. Balazinska

Univ. of Wash.

U. Cetintemel

Brown

V. Gadepally

MIT-LL

J. Heer

Univ. of Wash.

B. Howe

Univ. of Wash.

J. Kepner

MIT-LL

T. Kraska

Brown

S. Madden

MIT

D. Maier

Portland St U.

T. Mattson

Intel

S. Papadopoulis

Intel / MIT

J. Parkhurst

Intel

N. Tatbul

Intel / MIT

M. Vartek

MIT

S. Zdonik

Brown

ABSTRACT
This paper presents BigDAWG, a reference implementation of a
new architecture for “Big Data” applications. Such applications
not only call for large-scale analytics, but also for real-time stream-
ing support, smaller analytics at interactive speeds, data visualiza-
tion, and cross-storage-system queries. Guided by the principle that
“one size does not fit all” [13], we build on top of a variety of stor-
age engines, each designed for a specialized use case. To illustrate
the promise of this approach, we propose to demonstrate its effec-
tiveness on a hospital application using data from an intensive care
unit (ICU). This complex application serves the needs of doctors
and researchers and provides real-time support for streams of pa-
tient data. It will showcase novel approaches for querying across
multiple storage engines, data visualization, and scalable real-time
analytics.

1. INTRODUCTION
The Intel Science and Technology Center (ISTC) for Big Data

was founded in 2012. This center, with an open IP model, has fa-
cilitated building a community of researchers with a focus on Big
Data storage architectures, analytics, and visualizations while con-
sidering streaming and future disruptive technologies. The cen-
ter is now entering a “capstone” phase where it is implementing
a federated architecture to enable query processing over multiple
databases, where each of the underlying storage engines may have
a distinct data model. To tackle this challenge, the Big Data An-
alytics Working Group (BigDAWG) project seeks to explore chal-
lenges associated with building federated databases over multiple
data models [5, 10], specialized storage engines [13], and visual-
izations for Big Data [11].

1.1 MIMIC II Application
The working group first converged on a representative use case

to demonstrate the challenges inherent in applications that bring to-
gether the needs of many users and data sources. This use case is
based on the real intensive-care unit (ICU) dataset, MIMIC II [12]
(or “Multiparameter Intelligent Monitoring in Intensive Care (MIMIC)
II”).

MIMIC II is a publicly accessible dataset covering about 26,000
ICU admissions at Boston’s Beth Israel Deaconess Hospital. It con-
tains waveform data (up to 125 Hz measurements from bedside
devices), patient metadata (name, age, etc.), doctor’s and nurse’s
notes (text), lab results and prescriptions filled (both semi-structured
data). In practice, the hospital would store all of the historical data,
augmented by real-time feeds from current patients. Hence, this
system must support a variety of data types, standard SQL analyt-
ics (e.g., how many patients were given a particular drug), complex
analytics (e.g., compute the FFT of a patients waveform data and
then compare it to “normal”), text search (e.g., find patients who re-
sponded well to a particular drug or treatment), and real-time mon-
itoring (e.g., detect abnormal heart rhythms).

BigDAWG stores MIMIC II in a mixture of backends, includ-
ing Postgres, which stores the patient metadata, SciDB [4], which
stores the historical waveform data in a time-series (array) database,
S-Store [1], which stores a stream of device information, and Apache
Accumulo, which stores the associated text data in a key-value
store. In addition, we will evaluate several novel storage engines,
as outlined in Section 2.5. Each of these databases is good at part of
the MIMIC II workload, but none perform well for all of it. Hence,
this application is a good example of “one size does not fit all”.

To demonstrate this multi-faceted use case, we plan to offer the
following interfaces for user interaction:
Browsing: This is a pan/zoom interface whereby a user may browse
through the entire MIMIC II dataset, drilling down on demand to
access more detailed information. This interface will efficiently
display a top-level view (an icon for each group of the 26,000
patient-days) and flexibly enable users to probe the data at different
levels of granularity. To provide interactive response times, Big-
DAWG will prefetch data in anticipation of user movements. We
are presently researching this issue.
Exploratory Analysis Users will interactively explore interesting
relationships in medical data with the help of BigDAWG. Figure 2
is an example of this screen. Here, the system draws the user’s
attention to an unusual relationship in their selected patient pop-
ulation between race and hospital stay duration. This population
reverses the trend seen in the rest of the data. From this graph,
the user will have the opportunity to drill down into the source
data to determine what prompts this correlation. This interface will
demonstrate the features discussed in Section 2.2.
Complex Analytics: This screen enables a non-programmer to run
a variety of complex analytics, such as linear regression, fast fourier
transforms, and principal component analysis, on patient waveform
data. This interface will highlight the research challenges explored
in Section 2.4.
Text Analysis: From this window a user may run complex key-
word searches such as “find me the patients that have at least three
doctor’s report saying ‘very sick’ and are taking a particular drug”.
These non-trivial queries will showcase our novel facilities for query-
ing over multiple data models in Section 2.1.
Real-Time Monitoring: In this demo, the waveform data of cur-
rent patients will be stored in S-Store, a novel transactional stream
processing engine. We will have a monitoring display to show
this real-time patient data. In addition, we will have a workflow
that compares the incoming waveforms to reference ones, raising
an alert when the engine identifies significant differences between
the two. This interface will demonstrate the capabilities in Sec-
tions 2.3.

1.2 Guiding Tenets
By working on this demo, we have uncovered several guiding

principles for building the BigDAWG reference implementation.

1

Our	
 VLDB’2015	
 Demo	

Shim

Myria

MyriaQ

SciDB

MyriaX

Hypotension predictor

We have preliminary results targeting MyriaX, SciDB, S-store, D4M, graphulo
and several visualization packages.

Third party names are the property of their owners

The	
 App:	
 Hypotension	
 Predictor	

•  Problem:	
 blood	
 pressure	
 drops	
 (hypotension)	
 àshock	
 à	
 death.	
 	
 Early	
 interven1on	
 is	
 key	

for	
 survival.	

•  Solu1on:	
 Machine	
 learning	
 over	
 heterogeneous	
 data	
 (from	
 MIMIC	
 II)	
 to	
 iden1fy	
 pa1ents	

about	
 to	
 suffer	
 from	
 a	
 severe	
 drop	
 in	
 blood	
 pressure?	

•  Algorithm	
 (from	
 Saeed	
 and	
 Mark*)	
 	
 build	
 a	
 classifier	
 ..	
 Haar	
 transforms	
 over	
 MIMICII	
 1me	

series	
 data,	
 summarize	
 as	
 histograms,	
 and	
 performs	
 a	
 K	
 nearest	
 neighbor	
 search.	
 	

Correlate	
 with	
 pa1ent	
 data.	

14

Source: Magdalena Balazinska and Brandon Haynes, university of Washington.
*A Novel Method for the Efficient Retrieval of Similar Multiparameter Physiologic Time Series Using Wavelet-Based Symbolic
Representations. Mohammed Saeed and Roger Mark, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839671/

0	

5	

10	

15	

20	

SciDB	
 Myria-­‐X	
 MyriaX	
 +SciDB	

Hypotension	
 Classifier	
 	

Run3me	
 in	
 seconds	
 (lower	
 is	
 be@er)	

Third party names are the property of their owners

Real Time DBMSs

BigDAWG Query Language
and Data Federation layer

Visualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetching

SW Development
e.g, APIs for traditional languages, Julia, GraphMat, ML Base

SciDB
Analytics
e.g., PLASMA, ML algos, plsh, GraphBLAS, other analytics packages

TupleWare

Hardware platforms
e.g., Cloud and cluster infrastructure, NVM simulator, 1000 core simulator, Xeon Phi, Xeon

Applications
e.g., Medical data, astronomy, twitter, urban sensing, IoT

TileDBS-Store

“Narrow Waist”
Provides Portability

MyriaX
Analytics DBMSs

Spill
Stream

BigDawg:	
 An	
 integrated	
 polystore	
 system	

Third party names are the property of their owners

System	
 Infrastructure	
 for	
 BigDAWG	

Research	

•  To	
 explore	
 BigDAWG,	
 we	
 need	
 to:	

–  Quickly	
 load	
 a	
 variety	
 of	
 DataBase	
 Management	
 Systems	

(DBMS)	

– Mix	
 HPC	
 (MPI)	
 jobs	
 with	
 tradi1onal	
 DBMS	
 jobs	

– Manage	
 everything	
 through	
 an	
 end-­‐user	
 driven	
 web	

interface	

•  Fortunately,	
 we	
 were	
 able	
 to	
 work	
 with	
 the	
 team	
 behind	
 the	

MIT	
 SuperCloud.	

Enabling	
 on-­‐demand	
 Database	
 compu3ng	
 with	
 MIT	
 SuperCloud	
 Database	
 management	

system,	
 Andrew	
 Prout,	
 Jeremy	
 Kepner,	
 Peter	
 Michaleas,	
 William	
 Arcand,	
 David	
 Bestor,	
 Bill	

Bergeron,	
 Chansup	
 Byun,	
 Lauren	
 Edwards,	
 Vijay	
 Gadepally,	
 Ma'hew	
 Hubbell,	
 Julie	
 Mullen,	

Antonio	
 Rosa,	
 Charles	
 Yee,	
 Albert	
 Reuther,	
 IEEE	
 High	
 Performance	
 Extreme	
 Compu1ng	

Conference	
 2015,	
 17	
 September	
 2015	

LLGrid- 17

Common Big Data Architecture

Commanders Operators Analysts

Users

Maritime Ground Space C2 Cyber OSINT

<html>
Data

Air HUMINT Weather

Analytics
A

C

D E

B

Computing

Web

Files

Scheduler

Ingest &
Enrichment Ingest &

Enrichment Ingest
Databases

Source: Jeremy Kepner, MIT Lincoln Labs

LLGrid- 18

Why a Database Management System?

•  Remove requirement for dedicated servers, while avoiding
virtual machines (VMs)
–  In addition to performance concerns, VMs historically have caused

problems for the timeout-based failure detection features of
Accumulo

•  Enable rapid creation of new databases
•  Reduce waste of resources on idle databases
•  Create a viable backup & restore strategy
•  Ensure security concerns are appropriately addressed
•  Empower the less IT savvy researchers & scientists with self-

service commands for common requests
•  Integration with HPCC scheduler

Database creation should be closer to a mkdir than a major IT project

Source: Jeremy Kepner, MIT Lincoln Labs

LLGrid- 19

Database Lifecycle

Central Storage
(Lustre)

Scheduler

Compute Nodes

Cluster
Switch

LAN Switch

Web Portal

Dynamic DNS

Database User System Admin

db_create accumulo -n 4
testdb01 SecGroup

db01
DB Files

DNS: 1.2.3.4

Hadoop HDFS

Apache
Zookeeper

• Master
• Monitor
• Garbage Collector
• Tracer
• Tablet Server

Password: ABC123 Status: Started Status: Stopped

db_stop testdb01 db_start testdb01

Source: Jeremy Kepner, MIT Lincoln Labs

MIT SuperCloud and BigDAWG

20

The SuperCloud lets researchers load multiple
databases and Analytics jobs onto physical

hardware through a simple web based interface.

Vital for productivity when integrating results
into BigDAWG from so many teams!

21 21

Real Time DBMSs

BigDAWG Query Language
and Data Federation layer

Visualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetching

SW Development
e.g, APIs for traditional languages, Julia, GraphMat, ML Base

SciDB
Analytics
e.g., PLASMA, ML algos, plsh, GraphBLAS, other analytics packages

TupleWare

Hardware platforms
e.g., Cloud and cluster infrastructure, NVM simulator, 1000 core simulator, Xeon Phi, Xeon

Applications
e.g., Medical data, astronomy, twitter, urban sensing, IoT

TileDBS-Store

“Narrow Waist”
Provides Portability

MyriaX
Analytics DBMSs

Spill
Stream

BigDawg:	
 An	
 integrated	
 polystore	
 system	

Third party names are the property of their owners

Arrays	
 in	
 Big	
 Data	
 problems	

•  Data	
 is	
 olen	
 naturally	
 considered	
 as	
 an	
 array:	

–  An	
 object	
 with	
 mul1ple	
 dimensions	
 (e.g.	
 2)	

–  The	
 dimensions	
 define	
 a	
 logical	
 coordinate	
 space	
 	

–  A	
 cell	
 “exists”	
 at	
 each	
 point	
 in	
 the	
 coordinate	
 space.	

–  A	
 cell	
 has	
 one	
 or	
 more	
 a'ributes	
 which	
 collec1vely	
 define	
 the	

“value”	
 at	
 that	
 cell.	

•  Data	
 is	
 usually	
 sparse	

–  E.G.	
 the	
 AIS	
 data	
 set	

showing	
 ship	
 loca1ons	

as	
 a	
 func1on	
 of	
 1me	
 in	

and	
 around	
 U.S.	
 waters	

TileDB	
 a	
 new	
 array	
 data	
 storage	
 manager:	

op1mized	
 for	
 Sparse	
 Arrays	

x

y

cell

empty cell

dimensions
tile

attribute values
(a1, a2, …, am)

Logical	
 representa3on	
 Physical	
 representa3on	

(x, y) a1

…

am
cell tile

Files coordinates

Tile: Atomic unit of processing
Segment: Atomic unit of I/O

segment

Manage array storage as tiles of different shape/size in the
index space, but with ~equal number of non-empty cells

Joint	
 Genotyping	
 Benchmark*	

samples

Tim
e (Seconds)

BCF: GATK SW
Optimized by

Intel

Intel® Xeon® E5 2697 v2 CPU, 12 cores, dual socket, 128 GB RAM, CentOS6.6, Western
Digital 4 TB WD4000F9YZ-0 as a ZFS RAID0 pool. Single thread/core results.

0	
 200	
 400	
 600	
 800	
 1000	
 1200	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

TileDB	

BCF	

*Benchmark jointly developed by Intel and the Broad Genomics Institute. Each sample is
10MB. Compute correlations across samples at ~5000 positions.

Real Time DBMSs

BigDAWG Query Language
and Data Federation layer

Visualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetching

SW Development
e.g, APIs for traditional languages, Julia, GraphMat, ML Base

SciDB
Analytics
e.g., PLASMA, ML algos, plsh, GraphBLAS, other analytics packages

TupleWare

Hardware platforms
e.g., Cloud and cluster infrastructure, NVM simulator, 1000 core simulator, Xeon Phi, Xeon

Applications
e.g., Medical data, astronomy, twitter, urban sensing, IoT

TileDBS-Store

“Narrow Waist”
Provides Portability

MyriaX
Analytics DBMSs

Spill
Stream

BigDawg:	
 An	
 integrated	
 polystore	
 system	

Third party names are the property of their owners

Programming	
 languages	
 in	
 Academia	

26 Source: http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext

The academic world has moved into
“high productivity” languages.

Maybe HPC should give them a try?

Third party names are the property of their owners

What	
 is	
 Julia?	

•  Julia	
 is	
 yet	
 another	
 new	
 language!!	

•  Started	
 in	
 2009	
 in	
 Alan	
 Edelman's	
 group	
 at	
 MIT.	

•  The	
 problem	
 is	
 …	
 do	
 we	
 really	
 need	
 a	
 new	
 language?	
 …	
 computer	

scien1sts	
 spend	
 more	
 1me	
 crea1ng	
 new	
 languages	
 than	
 making	

exis1ng	
 languages	
 actually	
 work.	

•  But	
 people	
 I	
 know	
 and	
 respect	
 have	
 convinced	
 me	
 to	
 taka	
 a	
 close	

look	
 at	
 Julia	

–  It	
 is	
 rela1vely	
 easy	
 to	
 learn	

–  A	
 non-­‐viral	
 open	
 source	
 license	
 (MIT	
 License)	
 so	
 corporate	
 types	
 can	
 play	

with	
 it.	

–  A	
 large	
 and	
 growing	
 community	
 …	
 over	
 350	
 contributors	
 since	
 it	
 started	
 in	

2009	

Third Party names are the property of their owners

What	
 is	
 Julia?	

•  An	
 excellent	
 founda3on	
 for	
 programming	
 research.	

–  Core	
 func1onality	
 of	
 Julia	
 is	
 wri'en	
 in	
 Julia.	
 	
 	

–  Benefits	
 from	
 large	
 LLVM	
 eco-­‐system.	

–  Introspec3on:	
 	
 Exposes	
 transforma1ons	
 from	
 high	

level	
 code	
 into	
 na1ve	
 assembly	
 code	
 …	
 so	
 you	
 can	

manipulate	
 them	
 inside	
 Julia	

28

Parse source into AST

Lower AST

Type Inference

Build LLVM Intermediate Rep.

Emit machine code

code_lowered(fib,(Int32))	
 	

code_typed(fib,(Int32))	
 	

code_llvm(fib,(Int32))	
 	

code_native(fib,(Int32))	
 	

The	
 benefits	
 of	
 introspec1on	

•  Prospect compiler tool
generates optimized C code
from Julia Source:

•  10-170 speedup over Julia
due to:
•  Parallelization
•  Loop fusion
•  Domain specific

optimizations
•  vectorization

•  Using the flexible Julia framework, a group at Intel created C backend
integrated with Julia (Prospect … Open Source release Q4’2015)

Source: Tatiana Shpeisman of Intel

Running on a server with two Intel® Xeon® E5-2690v2 processors at 3 Ghz, 128GB RAM

24x	

146x	

169x	

25x	

63x	

36x	

14x	

33x	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

Sp
ee
du

p	

ov
er
	
 Ju

lia
	
 	

Prospect	
 vs.	
 Julia	

Julia	

C	
 LLVM	
 IR	

HW	

PSE
compiler

ICC

Julia
compiler

LLVM
PSE: our Julia based Problem Solving Environment … of
which Prospect is a key component.

The	
 benefits	
 of	
 introspec1on	

•  Prospect compiler tool
generates optimized C code
from Julia Source:

•  10-170 speedup over Julia
due to:
•  Parallelization
•  Loop fusion
•  Domain specific

optimizations
•  vectorization

•  Using the flexible Julia framework, a group at Intel created C backend
integrated with Julia (Prospect … Open Source release Q4’2015)

Source: Tatiana Shpeisman of Intel

Running on a server with two Intel® Xeon® E5-2690v2 processors at 3 Ghz, 128GB RAM

24x	

146x	

169x	

25x	

63x	

36x	

14x	

33x	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

Sp
ee
du

p	

ov
er
	
 Ju

lia
	
 	

Prospect	
 vs.	
 Julia	

What	
 is	
 Julia?	

•  It	
 is	
 a	
 dynamic	

scrip1ng	
 language	

(like	
 python	
 or	

perl)	

•  Syntax	
 natural	
 to	

people	
 working	

with	
 Math	
 plus	
 a	

rich	
 set	
 of	
 built	
 in,	

standard	

opera1ons	
 (Like	

Matlab	
 or	
 R).	

Third Party names are the property of their owners

What	
 is	
 Julia?	

function	
 fib(n)	

	
 	
 	
 	
 if	
 n<2	

	
 	
 	
 	
 	
 	
 	
 	
 n	

	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 fib(n-­‐1)+fib(n-­‐2)	

	
 	
 	
 	
 end	

end	

32

function definition

fib(n)	
 =	
 n<2	
 ?	
 n	
 :	
 fib(n-­‐1)+fib(n-­‐2)	
 one line shorthand

implicit return value

no need to declare parameter types

time = O(1.618n)

Source: Arch Robison of Intel

A general purpose programming
language with sophisticated dataflow

type discovery

With a very compact syntax.

What	
 is	
 Julia?	

function	
 fibfast(n)	

	
 	
 	
 	
 @assert	
 n>=1	

	
 	
 	
 	
 a	
 =	
 zero(n)	

	
 	
 	
 	
 b	
 =	
 one(n)	

	
 	
 	
 	
 for	
 i=2:n	

	
 	
 	
 	
 	
 	
 	
 	
 (a,b)	
 =	
 (b,a+b)	

	
 	
 	
 	
 end	

	
 	
 	
 	
 b	

end	

33

Macro

Loop from 2 to n inclusive

Set local variable a to zero of same type as n

Set local variable b to one of same type as n

tuple construction and destructuring

implicit return value

time = O(n)

Source: Arch Robison of Intel

What	
 is	
 Julia?	

•  Mul1ple	

dispatch	

•  Dynamic	

polymorphism	

	

Third Party names are the property of their owners

Since ^ is generically
represented in terms of *, this
becomes the composition of

functions (sin(sin(x)) … which is
what Gauss wanted it to be.

Distributed	
 Memory	
 Parallelism	

function	
 fibpar(n)	

	
 	
 	
 	
 if	
 n<30	

	
 	
 	
 	
 	
 	
 	
 	
 fib(n)	

	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 x	
 =	
 @spawn	
 fibpar(n-­‐1)	

	
 	
 	
 	
 	
 	
 	
 	
 y	
 =	
 fibpar(n-­‐2)	

	
 	
 	
 	
 	
 	
 	
 	
 y+fetch(x)	

	
 	
 	
 	
 end	

end	

35

Run in parallel

Wait and retrieve result

•  Each process is single-threaded.

•  Julia coroutine mechanism simplifies
writing inter-process synchronization code.

•  Also has distributed array objects.

Source: Arch Robison of Intel

Shared	
 Memory	
 Parallelism	

36

Kiran Pamnany of Intel has been experimenting with adding
threading to Julia … with some exciting preliminary results

Third Party names are the property of their owners

Julia	
 and	
 TileDB	

•  Conjugate	
 transpose	
 is	
 one	
 of	
 5	
 core	
 methods	

needed	
 for	
 Julia’s	
 generic	
 itera1ve	
 solvers	

framework.	
 	
 We	
 have	
 leveraged	
 TileDB	
 and	

Julia	
 to	
 prototype	
 out-­‐of-­‐core	
 linear	
 algebra	

opera1ons	
 around	
 these	
 generic	
 abstrac1ons.	

Third Party names are the property of their owners

TileDB:	
 a	
 persistence	
 layer	
 for	

out-­‐of-­‐core	
 computa1ons.	

Conjugate	
 transpose	
 (A’)	
 with	
 TileDB’s	

Arrays,	
 TileDB’s	
 generic	
 Array	
 Cell	
 types,	

and	
 flexible	
 iterator	
 framework.	

Source: Jake Bolewski and Stavros Papadopoulos

Summary	

•  If	
 “One	
 size	
 does	
 not	
 fit	
 all™”	
 …	
 Then	
 we	
 need	
 Polystore.	

•  Produc1vity	
 demands	
 a	
 single	
 interface	
 to	
 mul1ple	
 stores:	

–  BigDAWG	
 API	
 to	
 1e	
 Islands	
 together	

–  BQL:	
 the	
 Dream	
 of	
 one	
 Algebra	
 to	
 rule	
 them	
 all	

•  TileDB:	
 The	
 advantage	
 of	
 a	
 domain	
 specific	
 storage	
 engine.	

•  Julia:	
 maybe	
 its	
 1me	
 to	
 consider	
 a	
 new	
 language?	
 	
 	

Trademark held by Mike Stonebraker

Work in
progress

I’m skeptical,
but willing to
be convinced

