
The Ultimate Baseball 
Road Trip and 
Algorithm

Michael Mountain
CLSAC 10/30/18







Combinatorial Optimization

● Optimize a combination from a finite set of objects
● Define a set of constraints that a solution must satisfy
● Define criteria to compare one solution to another



Major League Baseball (MLB) schedule

● 30 teams each play 81 home games in a season, between April and September
● 30 x 81 = 2430 total games
● Find the most efficient driving route to attend one game at each stadium
● Primary optimization: Minimize total number of days (trip duration)
● Secondary: Minimize driving time (travel duration)



Constraints

https://harvardsportsanalysis.files.wordpress.com/2011/06/shortest_possible_baseball_road_trip1.pdf

Our problem space has 2,494 decision variables and 
approximately 120,000 constraints



Domain-Specific Heuristics

● Isolated West Coast stadiums
● Reasonable upper bound
● All-Star Break (early July)



Creating Subsets of the Problem Space

1. Identify a date range where the seven West Coast stadiums can be visited in no more 
than nine days

2. Select all games from other stadiums that are scheduled within 26 days of either end of 
the West Coast date range

3. Remove any games which are on a different side of the All-Star Break from the West 
Coast date range

4. Repeat steps 1-3 with a different West Coast date range

The larger subsets will have about 700 decision variables and 15,000 constraints
(~20x reduction in computational complexity)



NEOS (Network-Enabled Optimization System)













Trip Stats

● 30 MLB games in 36 days
● 16,935 miles driven
● Every major US interstate (multiples of 5)
● 34 states + DC and Ontario
● 49 gas stops
● 574 players (77% of major league rosters)
● Four MLB debuts
● Orioles record: 9-23



● 2 guest appearances on FanGraphs podcast Effectively Wild 
(episodes 1169 and 1263)

● @MLBRoadTrip on Twitter with ballpark photos, stadium food 
selections and road trip playlists

● Interviews with WCBS radio in New York, Shepherd Express in 
Milwaukee, Fast Company and Technical.ly Baltimore

● Meetups with family, friends, and fans all over the country



Source Code

https://github.com/mountm/mlbroadtrip



Special Thanks

● Ben Blatt & Harvard Sports Analysis Collective
● neos-server.org
● Catalyte
● Effectively Wild (@EWPod)
● Interstate Highway System
● Assistant driver Dave Mountain (7/22, 8/2-8/10)

Source code at github.com/mountm/mlbroadtrip



Optimizing for Travel Distance 
with the Backtracking Approach



Backtracking approach

● Incrementally build a candidate solution
● Abandon your candidate (backtrack) as soon as you can confirm that 

the candidate is invalid (unable to be extended)
● Not a formal algorithm, more of a metaheuristic



Two Questions

○ What does a partial candidate solution looks like?
○ How do we know if a candidate solution is valid?



Backtracking pseudocode, where the entry point is 
bt(root(P))

procedure bt(c)
if reject(P, c) then return
if accept(P, c) then output(P, c)
s ← first(P, c)
while s ≠ Λ do

bt(s)
s ← next(P, s)

Λ is the null candidate



Let’s define our procedural parameters!
P - an array of games in the schedule, starting from the beginning point of our time-optimized trip, 
ending at the final allowed day, sorted by start time

root(P) - the first game in the time-optimized solution

reject(P, c) - verify that each game in the candidate c can be reached from the previous one and that no 
stadium is visited twice

accept(P, c) - verify that the length of the candidate array is 30

first(P, c) - From P, select the next game after the final game in c, and add it to c (or return Λ)

next(P, s) - From P, select the next game after the final game in c and replace the final game in c

output(P, c) - Calculate the total driving distance for c. If no previous solution was found, accept this as 
the best solution. Otherwise, keep the solution with the shortest distance needed.



Improvements to Consider

● The reject function should err on the side of caution
● But it should be as aggressive as possible
● Effective equivalence of partial candidates for earlier pruning
● Trading memory usage for execution time (e.g. parallelization)


