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What is predictive analytics?

» Training set of labeled cases:
0 1 1 0 1 025 0.16 068 —0

0 1 0 1 0 020 009 077 —=0
1 0 1 1 1 042 031 054 —1
0 01 1 0 058 029 063 —1
1 1 1 0 0 018 0.13 082 —=0

» Learn model that predicts outputs in train
set from input features.

» Use model to make predictions on cases not

used for training.
0 1 1 0 1 020 0.16 0.68 —?



How long did your last analytics project take?
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Why does this happen?

Spoiler: It’s not the computer’s fault.
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Many Steps, and All Take Time

STAGE MEDIAN % TIME
Data Access 20%
Prepare Data 30%
Modeling 14%
Evaluate & Study Model 20%
Report Results n/a
Deployment n/a

57 respondents

M.A. Munson. A study on the importance of and time spent on different modeling

steps. SIGKDD Explorations Newsletter, 201 1.
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Running Example: Prioritized Call Lists

How do I optimize my sales force
to maximize profit?
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Running Example: Prioritized Call Lists

How do I optimize my sales force
to maximize profit?

Which customers to call, about which products?
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Running Example: Prioritized Call Lists (cont’d)
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Step 0: Data Access

Data access is a collaborative, iterative process.

For example ...

MONTH ACTIVITY

£
Nov
Dec
Jan
Feb

Mar

Coordination meetings, data reviews.
Brainstorm useful data, go find owners.
Analysts get samples of key data, start prototyping.
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Step 0: Data Access

Data access is a collaborative, iterative process.

For example ...

MONTH ACTIVITY

£
Nov
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Jan
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Data update: column changes, delimiter.
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Step 0: Data Access
Data access is a collaborative, iterative process.

For example ...

MONTH ACTIVITY
%
Nov
Dec
Jan
Feb Full data feeds available.
Reorganized data: new folders, new server.

Mar
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Step 0: Data Access
Data access is a collaborative, iterative process.

For example ...

MONTH ACTIVITY
%
Nov
Dec
Jan
Feb

Mar Data update: column changes.
Added 3 new data feeds.
Figure out missing join logic.
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Step 0: Data Access
Data access is a collaborative, iterative process.

For example ...

MONTH ACTIVITY

*

Nov
Dec
Jan
Feb

Mar
Apr Data update: column changes.

What does this column really mean?
Time period mismatch! Now what?

10/27



Step 1: Prepare Data

You can spend your whole life preparing data.

» Data Integration

» Canonicalize join columns.
» How to link data feeds missing common join key?

» Data Cleaning
> Aggregate to daily activity.
» Create negative examples.
» Handle Missing Values
> Create IsMissing features. (auto)



Step 1: Prepare Data — But Wait, There’s More!

You can spend your whole life preparing data.

» Shape Features

> Bin numeric features. (auto)
> Convert strings to indicator features. (auto)
> Encode strings as numbers (counting trick). (auto)
> Rolling window statistics.
What much did Bob buy/sell last 2 weeks?

» Transform Response Variable
> Is Bob likely to make a high value trade next week?

» Feature Selection (skipped)

» Dimensionality Reduction (skipped)




Step 2: Modeling

Lots of trial & error to get best results.

» Map business problem to ML problem.
Pr(trade | features) vs.
Who should I call & why?
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Step 2: Modeling

Lots of trial & error to get best results.

» Map business problem to ML problem.
Pr(trade | features) vs.
Who should I call & why?
» Define success metric.
> Tried: RMSE, ROC Area, Recall@K
> Winner: average daily hit rate
» Try a bunch of ML algorithms.
» Tune hyper-parameters.

> When to stop gradient descent?
> Grid search for good regularization.



Step 3: Evaluate & Study Model

Approach depends on goal and ML algorithm.
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Step 3: Evaluate & Study Model

Approach depends on goal and ML algorithm. ,

Prediction Accuracy? Measure on holdout data, ask experts.
Be careful with time series data!

Target leakage? Look for super, too-good-to-be-true features.
Justification? Annotate predictions with reason codes.
Plausible domain theory? (skipped)

Extrapolation risk? (skipped)

14/27



Step 4: Report to Stakeholders

Randy Glasbergen
e glastesrgen o

“What good is technology if it takes six seconds
to send a message but six months to get
someone to act on it?!”

Reproduced with permission from Glasbergen Cartoon Service.
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Step 5: Deployment

Deploying predictive analytics is a ton of work.

Used batch execution for prioritized call list deployment:
» Rebuild model daily.
» Generate updated call list hourly.
» Jobs triggered by cron-like system.
» Plumb predictions and reasons and metadata to a UL
» Heavy customization of reason codes.

» Run book: how to install, dependency on data feeds, where are
results written, how to handle errors, ...
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Step 5: Deployment — Streaming Style

Deploying predictive analytics is a ton of work.

Example 2: used streaming execution for credit card fraud app:
» REST end point to get predictions.
» Latency < 30ms for 99.999% of transactions.
> 99.99% uptime per data center.

» Live model updates and safety guardrails.




Things that (Seem to) Help
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Get All Data in One Place
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Everything Else:
Get Better Tooling
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Build Libraries for Common Operations

Build what you need once — not for every project.

Low hanging fruit:
» common domain transforms
» model insight tools

» quick & dirty visualization




Build Libraries for Common Operations

Build what you need once — not for every project.

Low hanging fruit:
» common domain transforms
» model insight tools

» quick & dirty visualization

Implementation quality matters:

» 5x faster model building
(rewrote transforms)

» 2x faster leakage diagnostic
(caching intermediate reprs.)

)
)
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Commit to One Machine Learning Algorithm

Algorithms sell publications.
Features win competitions.



Reduce Time to First Model

How:
> quick & dirty sub-sample

» minimize data prep, especially on features

Why:
» Many problems become obvious once you have a model.

» Many feature problems have negligible impact.



Enable Rapid Iteration

Interactive tools reduce context switches.

Compute implications:

» scalability = multi-core
hardware

» must keep data in memory

» parallel or incremental algorithms



Enable Rapid Iteration

Interactive tools reduce context switches.

Compute implications:

» scalability = multi-core
hardware

» must keep data in memory

» parallel or incremental algorithms

Update or rebuild?
» When you add add rows?
» When you add features?

» When you remove features?

Image source: http://bit.ly/1Ngmdyw
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Replace Human Search with Computer Search

Computers are better than humans at search & optimization:

OLD WAY NEW WAY
manually set parameters least squares regression (1821),
computer solvers (1970’s)

experts write rules
set hyper-parameters by intuition

experts pick features

experts transform data
experts specify join plan

Big wins if you embrace empiricism.
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Replace Human Search with Computer Search

Computers are better than humans at search & optimization:

OLD WAY NEW WAY

manually set parameters least squares regression (1821),
computer solvers (1970’s)

experts write rules learn rules from data (1980’s)

set hyper-parameters by intuition grid search (1960’s),
stochastic optimization (2000’s)

experts pick features hill-climbing (1970’s),

LASSO (1996), AIC (2002)
experts transform data advanced learning systems (now)
experts specify join plan automated search (next 5 years?)

Big wins if you embrace empiricism.
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A True Story
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A True Story

TIME EMAIL

10:30a  (CEO) I'm sitting next to CTO of (customer) on the
flight to SF. He would like to see how accurate the es-
timates are for predicting total spend per cost center for
each customer. Can you do a quick estimate before we
land at noon? ;)

11:01a  (CEO) No pressure. But ...if you do this, he will con-
sider it amazing.

11:08a  (Scott) On it. Pulling data from Hadoop.

11:20a  (Scott) Model is now training. ..

11:21a  (CEO) How are you backtesting?

11:30a  (Scott) The model predicts each customer’s daily spend
by spend category.

11:34a  (CEO) Roll-up over the last quarter, please.

11:39a  (Scott) Can it be monthly? The data sample is 6 months.

12:11p  (Scott) This is actually rolled-up overall, but here are the

results in Excel.
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