Why Predictive Analysis is Slow, and How to Fix it

Art Munson amunson@contextrelevant.com

context relevant

Chesapeake Large Scale Analytics Conference, 2015

context relevant

Revolutionize the way people make decisions.

What is predictive analytics?

Training set of labeled cases:

0	1	1	0	1	0.25	0.16	0.68	$\rightarrow 0$
0	1	0	1	0	0.20	0.09	0.77	$\rightarrow 0$
1	0	1	1	1	0.42	0.31	0.54	$\rightarrow 1$
0	0	1	1	0	0.58	0.29	0.63	$\rightarrow 1$
1	1	1	0	0	0.18	0.13	0.82	$\rightarrow 0$
•••								

- Learn *model* that predicts outputs in train set from input *features*.
- Use model to make predictions on cases not used for training.

 $0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0.20 \quad 0.16 \quad 0.68 \quad \rightarrow ?$

How long did your last analytics project take?

Why does this happen?

Why does this happen?

Spoiler: It's not the computer's fault.

Outline

Introduction

Where does the time go?

How to Increase Productivity

Closing Thoughts

Many Steps, and All Take Time

Stage	Median % Time
Data Access	20%
Prepare Data	30%
Modeling	14%
Evaluate & Study Model	20%
Report Results	n/a
Deployment	n/a
	57 respondents

M.A. Munson. A study on the importance of and time spent on different modeling steps. SIGKDD Explorations Newsletter, 2011.

Running Example: Prioritized Call Lists

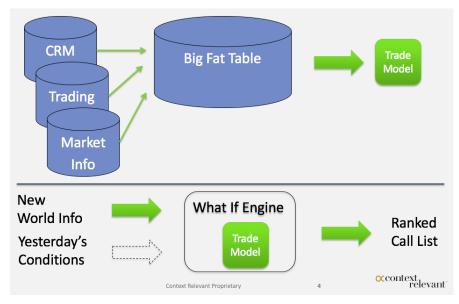
How do I optimize my sales force to maximize profit?

Running Example: Prioritized Call Lists

How do I optimize my sales force to maximize profit?

Which customers to call, about which products?

Running Example: Prioritized Call Lists (cont'd)



Data access is a collaborative, iterative process.

Month	ACTIVITY
*	Coordination meetings, data reviews.
Nov	Brainstorm useful data, go find owners.
Dec	Analysts get samples of key data, start prototyping.
Jan	Data update: column changes, delimiter.
Feb	Full data feeds available.
	Reorganized data: new folders, new server.
Mar	Data update: column changes.
	Added 3 new data feeds.
	Figure out missing join logic.
Apr	Data update: column changes.
	What does this column <i>really</i> mean?
	Time period mismatch! Now what?

Data access is a collaborative, iterative process.

Month	ACTIVITY
*	Coordination meetings, data reviews.
Nov	Brainstorm useful data, go find owners.
Dec	Analysts get samples of key data, start prototyping.
Jan	Data update: column changes, delimiter.
Feb	Full data feeds available.
	Reorganized data: new folders, new server.
Mar	Data update: column changes.
	Added 3 new data feeds.
	Figure out missing join logic.
Apr	Data update: column changes.
	What does this column <i>really</i> mean?
	Time period mismatch! Now what?

Data access is a collaborative, iterative process.

Month	ACTIVITY
*	Coordination meetings, data reviews.
Nov	Brainstorm useful data, go find owners.
Dec	Analysts get samples of key data, start prototyping.
Jan	Data update: column changes, delimiter.
Feb	Full data feeds available.
	Reorganized data: new folders, new server.
Mar	Data update: column changes.
	Added 3 new data feeds.
	Figure out missing join logic.
Apr	Data update: column changes.
	What does this column <i>really</i> mean?
	Time period mismatch! Now what?

Data access is a collaborative, iterative process.

Month	ACTIVITY
*	Coordination meetings, data reviews.
Nov	Brainstorm useful data, go find owners.
Dec	Analysts get samples of key data, start prototyping.
Jan	Data update: column changes, delimiter.
Feb	Full data feeds available.
	Reorganized data: new folders, new server.
Mar	Data update: column changes.
	Added 3 new data feeds.
	Figure out missing join logic.
Apr	Data update: column changes.
	What does this column <i>really</i> mean?
	Time period mismatch! Now what?

Data access is a collaborative, iterative process.

Month	ACTIVITY
*	Coordination meetings, data reviews.
Nov	Brainstorm useful data, go find owners.
Dec	Analysts get samples of key data, start prototyping.
Jan	Data update: column changes, delimiter.
Feb	Full data feeds available.
	Reorganized data: new folders, new server.
Mar	Data update: column changes.
	Added 3 new data feeds.
	Figure out missing join logic.
Apr	Data update: column changes.
	What does this column <i>really</i> mean?
	Time period mismatch! Now what?

Step 1: Prepare Data

You can spend your whole life preparing data.

- Data Integration
 - Canonicalize join columns.
 - How to link data feeds missing common join key?
- Data Cleaning
 - Aggregate to daily activity.
 - Create negative examples.
- Handle Missing Values
 - Create IsMissing features. (auto)

Step 1: Prepare Data — But Wait, There's More!

You can spend your whole life preparing data.

- Shape Features
 - Bin numeric features. (auto)
 - Convert strings to indicator features. (auto)
 - Encode strings as numbers (counting trick). (auto)
 - Rolling window statistics. What much did Bob buy/sell last 2 weeks?
- Transform Response Variable
 - ► Is Bob likely to make a high value trade next week?
- Feature Selection (skipped)
- Dimensionality Reduction (skipped)

Step 2: Modeling

Lots of trial & error to get best results.

- Map business problem to ML problem.
 Pr(trade | features) vs.
 Who should I call & why?
- Define success metric.
 - ► Tried: RMSE, ROC Area, Recall@K
 - ▶ Winner: *average daily hit rate*
- ► Try a bunch of ML algorithms. (skipped)
- Tune hyper-parameters.
 - When to stop gradient descent? (auto)
 - Grid search for good regularization. (auto)

Step 2: Modeling

Lots of trial & error to get best results.

- Map business problem to ML problem.
 Pr(trade | features) vs.
 Who should I call & why?
- Define success metric.
 - ► Tried: RMSE, ROC Area, Recall@K
 - Winner: average daily hit rate
- ► Try a bunch of ML algorithms. (skipped)
- Tune hyper-parameters.
 - When to stop gradient descent? (auto)
 - Grid search for good regularization. (auto)

Step 2: Modeling

Lots of trial & error to get best results.

- Map business problem to ML problem.
 Pr(trade | features) vs.
 Who should I call & why?
- Define success metric.
 - Tried: RMSE, ROC Area, Recall@K
 - Winner: average daily hit rate
- Try a bunch of ML algorithms. (skipped)
- Tune hyper-parameters.
 - When to stop gradient descent? (auto)
 - Grid search for good regularization. (auto)

Approach depends on goal and ML algorithm.

Approach depends on goal and ML algorithm.

Prediction Accuracy? Measure on holdout data, ask experts. Be careful with time series data!

Approach depends on goal and ML algorithm.

Prediction Accuracy? Measure on holdout data, ask experts. Be careful with time series data!

Target leakage? Look for super, too-good-to-be-true features.

Approach depends on goal and ML algorithm.

Prediction Accuracy? Measure on holdout data, ask experts. Be careful with time series data! Target leakage? Look for super, too-good-to-be-true features. Justification? Annotate predictions with reason codes.

Approach depends on goal and ML algorithm.

Prediction Accuracy? Measure on holdout data, ask experts. Be careful with time series data! Target leakage? Look for super, too-good-to-be-true features. Justification? Annotate predictions with reason codes. Plausible domain theory? (skipped)

Approach depends on goal and ML algorithm.

Prediction Accuracy? Measure on holdout data, ask experts. Be careful with time series data! Target leakage? Look for super, too-good-to-be-true features. Justification? Annotate predictions with reason codes. Plausible domain theory? (skipped) Extrapolation risk? (skipped)

Step 4: Report to Stakeholders

"What good is technology if it takes six seconds to send a message but six months to get someone to act on it?!"

Reproduced with permission from Glasbergen Cartoon Service.

Step 5: Deployment

Deploying predictive analytics is a ton of work.

Used batch execution for prioritized call list deployment:

- Rebuild model daily.
- Generate updated call list hourly.
- Jobs triggered by cron-like system.
- Plumb predictions and reasons and metadata to a UI.
- Heavy customization of reason codes.
- Run book: how to install, dependency on data feeds, where are results written, how to handle errors, ...

Step 5: Deployment — Streaming Style

Deploying predictive analytics is a ton of work.

Example 2: used streaming execution for credit card fraud app:

- REST end point to get predictions.
- ► Latency < 30ms for 99.999% of transactions.
- ▶ 99.99% uptime per data center.
- Live model updates and safety guardrails.

Things that (Seem to) Help

Get All Data in One Place

Everything Else: Get Better Tooling

Build Libraries for Common Operations

Build what you need once - not for every project.

Low hanging fruit:

- common domain transforms
- model insight tools
- quick & dirty visualization

Build Libraries for Common Operations

Build what you need once - not for every project.

Low hanging fruit:

- common domain transforms
- model insight tools
- quick & dirty visualization

Implementation quality matters:

- 5x faster model building (rewrote transforms)
- 2x faster leakage diagnostic (caching intermediate reprs.)

Commit to One Machine Learning Algorithm

Algorithms sell publications. Features win competitions.

Reduce Time to First Model

How:

- quick & dirty sub-sample
- minimize data prep, especially on features

Why:

- Many problems become obvious once you have a model.
- Many feature problems have negligible impact.

Enable Rapid Iteration

Interactive tools reduce context switches.

Compute implications:

- scalability => multi-core hardware
- *must* keep data in memory
- parallel or incremental algorithms

Enable Rapid Iteration

Interactive tools reduce context switches.

Compute implications:

- scalability => multi-core hardware
- must keep data in memory
- parallel or incremental algorithms

Update or rebuild?

- When you add add rows?
- When you add features?
- When you remove features?

Image source: http://bit.ly/1Nqm4yw

Computers are better than humans at search & optimization:

Old Way	New Way
manually set parameters	least squares regression (1821),
	computer solvers (1970's)
experts write rules	learn rules from data (1980's)
set hyper-parameters by intuition	grid search (1960's),
	stochastic optimization (2000's)
experts pick features	hill-climbing (1970's),
	LASSO (1996), AIC (2002)
experts transform data	advanced learning systems (now)
experts specify join plan	automated search (next 5 years?)

Computers are better than humans at search & optimization:

Old Way	New Way
manually set parameters	least squares regression (1821), computer solvers (1970's)
experts write rules	learn rules from data (1980's)
set hyper-parameters by intuition	grid search (1960's),
	stochastic optimization (2000's)
experts pick features	hill-climbing (1970's),
	LASSO (1996), AIC (2002)
experts transform data	advanced learning systems (now)
experts specify join plan	automated search (next 5 years?)

Computers are better than humans at search & optimization:

Old Way	New Way
manually set parameters	least squares regression (1821),
	computer solvers (1970's)
experts write rules	learn rules from data (1980's)
set hyper-parameters by intuition	grid search (1960's),
	stochastic optimization (2000's)
experts pick features	hill-climbing (1970's),
	LASSO (1996), AIC (2002)
experts transform data	advanced learning systems (now)
experts specify join plan	automated search (next 5 years?)

Computers are better than humans at search & optimization:

OLD WAY	New Way
manually set parameters	least squares regression (1821),
	computer solvers (1970's)
experts write rules	learn rules from data (1980's)
set hyper-parameters by intuition	grid search (1960's),
	stochastic optimization (2000's)
experts pick features	hill-climbing (1970's),
	LASSO (1996), AIC (2002)
experts transform data	advanced learning systems (now)
experts specify join plan	automated search (next 5 years?)

Computers are better than humans at search & optimization:

OLD WAY	New Way
manually set parameters	least squares regression (1821),
	computer solvers (1970's)
experts write rules	learn rules from data (1980's)
set hyper-parameters by intuition	grid search (1960's),
	stochastic optimization (2000's)
experts pick features	hill-climbing (1970's),
	LASSO (1996), AIC (2002)
experts transform data	advanced learning systems (now)
experts specify join plan	automated search (next 5 years?)

Computers are better than humans at search & optimization:

OLD WAY	NEW WAY
manually set parameters	least squares regression (1821),
	computer solvers (1970's)
experts write rules	learn rules from data (1980's)
set hyper-parameters by intuition	grid search (1960's),
	stochastic optimization (2000's)
experts pick features	hill-climbing (1970's),
	LASSO (1996), AIC (2002)
experts transform data	advanced learning systems (now)
experts specify join plan	automated search (next 5 years?)

Closing Thoughts

TIMEEMAIL10:30a(CEO) I'm sitting next to CTO of (customer) on the
flight to SF. He would like to see how accurate the es-
timates are for predicting total spend per cost center for
each customer. Can you do a quick estimate before we
land at noon? ;)

11:01a (CEO) No pressure. But ... if you do this, he will consider it amazing.

- 11:01a (CEO) No pressure. But ... if you do this, he will consider it amazing.
- 11:08a (Scott) On it. Pulling data from Hadoop.

- 11:01a (CEO) No pressure. But ... if you do this, he will consider it amazing.
- 11:08a (Scott) On it. Pulling data from Hadoop.
- 11:20a (Scott) Model is now training...

- 11:01a (CEO) No pressure. But ... if you do this, he will consider it amazing.
- 11:08a (Scott) On it. Pulling data from Hadoop.
- 11:20a (Scott) Model is now training...
- 11:21a (CEO) How are you backtesting?

- 11:01a (CEO) No pressure. But ... if you do this, he will consider it amazing.
- 11:08a (Scott) On it. Pulling data from Hadoop.
- 11:20a (Scott) Model is now training...
- 11:21a (CEO) How are you backtesting?
- 11:30a (Scott) The model predicts each customer's daily spend by spend category.

- 11:01a (CEO) No pressure. But ... if you do this, he will consider it amazing.
- 11:08a (Scott) On it. Pulling data from Hadoop.
- 11:20a (Scott) Model is now training...
- 11:21a (CEO) How are you backtesting?
- 11:30a (Scott) The model predicts each customer's daily spend by spend category.
- 11:34a (CEO) Roll-up over the last quarter, please.

- 11:01a (CEO) No pressure. But ... if you do this, he will consider it amazing.
- 11:08a (Scott) On it. Pulling data from Hadoop.
- 11:20a (Scott) Model is now training...
- 11:21a (CEO) How are you backtesting?
- 11:30a (Scott) The model predicts each customer's daily spend by spend category.
- 11:34a (CEO) Roll-up over the last quarter, please.
- 11:39a (Scott) Can it be monthly? The data sample is 6 months.

- 11:01a (CEO) No pressure. But ... if you do this, he will consider it amazing.
- 11:08a (Scott) On it. Pulling data from Hadoop.
- 11:20a (Scott) Model is now training...
- 11:21a (CEO) How are you backtesting?
- 11:30a (Scott) The model predicts each customer's daily spend by spend category.
- 11:34a (CEO) Roll-up over the last quarter, please.
- 11:39a (Scott) Can it be monthly? The data sample is 6 months.
- 12:11p (Scott) This is actually rolled-up overall, but here are the results in Excel.