

Detecting Lateral Movement with a Compute-Intense Graph Kernel

<anonymous collaborator> Steve Reinhardt <US government agency> D-Wave Government

spr@dwavesys.com

We implemented a compute-intensive graph kernel that finds lateral-movement-like behavior in netflow data and can execute quantumly in part. We sketch the remaining work to deliver quantum acceleration from graph kernels. We believe this enables a valuable new set of tools for cyber analysts.

Agenda

- Detecting lateral movement via maximum independent set
- Achieving high performance with graph kernels on a D-Wave system
- Implications for cyber and other analyses

Motivation

- Execution of some compute-intense graph kernels on D-Wave systems has yielded better answers than classical counterparts
 - Mniszewski et al., Quantum Annealing Approaches to Graph Partitioning on the D-Wave System, https://dwavefederal.com/app/uploads/2017/10/Qubits-Day-2-Morning-4_Susan_LANL.pdf
- DWave_NetworkX includes a set of compute-intensive kernels
 - Minimum vertex cover, minimum vertex coloring, maximum cut, maximum independent set, maximal matching, signed social network
 - <u>https://github.com/dwavesystems/dwave_networkx</u>
- Given exponential growth of computation with problem size, analysts have avoided these kernels, which are becoming tractable
- For what cyber problems are those (or similar) kernels useful?

Detecting Lateral Movement

- On graph of point-to-point logins (ssh, RDP), calculate maximum independent set (largest set of non-adjacent vertices)
- As point-to-point logins explore more of the enterprise network, MIS shrinks

 [WIP] Confirmed on traffic not known to contain lateral movement; working to confirm on traffic with lateral movement

Maximum Independent Set (MIS)

- An *independent set* is a set of vertices in a graph, no two of which are adjacent. A maximum *independent set* is an independent set of largest possible size for a given graph G.
- NP-hard problem

For exact solutions, a set is independent if and only if • its complement is a vertex cover. Therefore, the sum of the size of the largest independent set $\alpha(G)$ and the size of a minimum vertex cover $\beta(G)$ is equal to the number of vertices in the graph.

https://en.wikipedia.org/wiki/Independent_set_(graph_theory)#Finding_maximum_independent_sets Copyright © D-Wave Systems Inc. 6

The nine blue vertices form a maximum independent set for the Generalized Petersen graph GP(12,4)

Experiment

- LANL data, not known to contain lateral movement: <u>https://csr.lanl.gov/data/2017.html</u>
- 88 days of data; focused on first 8
- Used 4-day sliding time window
- Monitor shrinkage of max independent set as an indicator of lateral movement

Looking for a Good Graph Size

Good == relevant to large enterprise networks and feasible

#IP addresses full (V)	#IP addresses reduced	#point-to-point pairs (E)	MIS size	time (s)
75571	1682	1474	1353	5.2
75571	3388	1474	3253	22.0
75571	21388	1474	21253	908.9
84718	84718	1239	?	> 18 hours

Averages of 5 timesteps except time-limit-exceeded Running classically

Analytic Finds Smaller MIS Size

spr_mbp:10M \$ /Users/sreinhardt/technical/app_code/cyberGraph/process3.py netflow netflow --nTimesteps 8 --nTimestepsPerDay 4 - -inputFormat LANL --inputDigested --verbose --reduceGraph

Namespace(allInput='netflow', inputDigested=True, inputFormat='LANL', nRecordsPerTimeperiod=None, nTimesteps=8,

nTimestepsPerDay=4, nTimestepsPerWindow=None, pt2ptInput='netflow', reduceGraph=True, verbose=1)

Reducing graph? True

for timestep 3, the number of IP addresses in the full graph is 84718 and the number of IP-address-pairs that had point-to-point logins is 1239; the number of IP addresses in the reduced graph is 21178 and IP-address-pairs pt2tp is 1239

first MIS took 0:11:25.255169, second MIS took 0:17:05.962103

MIS size decreased from 21178 to 21059 (119) when ssh/telnet/RDP log-ins considered

IP addresses that are no longer part of the maximum independent set are ['ActiveDirectory', 'Comp005825', [...]

for timestep 4, the number of IP addresses in the full graph is 82543 and the number of IP-address-pairs that had point-to-point logins is

1472; the number of IP addresses in the reduced graph is 21380 and IP-address-pairs pt2tp is 1472

first MIS took 0:13:12.690244, second MIS took 0:14:24.761931

MIS size decreased from 21380 to 21245 (135) when ssh/telnet/RDP log-ins considered

IP addresses that are no longer part of the maximum independent set are ['ActiveDirectory', 'Comp005825', [...]

for timestep 5, the number of IP addresses in the full graph is 82266 and the number of IP-address-pairs that had point-to-point logins is 1525; the number of IP addresses in the reduced graph is 21427 and IP-address-pairs pt2tp is 1525

first MIS took 0:11:10.267566, second MIS took 0:11:31.594414

MIS size decreased from 21427 to 21294 (133) when ssh/telnet/RDP log-ins considered

IP addresses that are no longer part of the maximum independent set are ['ActiveDirectory', 'Comp005295', [...]

for timestep 6, the number of IP addresses in the full graph is 66069 and the number of IP-address-pairs that had point-to-point logins is

1551; the number of IP addresses in the reduced graph is 21459 and IP-address-pairs pt2tp is 1551

first MIS took 0:11:06.538207, second MIS took 0:17:56.528730

MIS size decreased from 21459 to 21317 (142) when ssh/telnet/RDP log-ins considered

IP addresses that are no longer part of the maximum independent set are ['ActiveDirectory', 'Comp005295', [...]

Preliminary Visualization

Discussion

- Why not use connected components (much faster)?
 - Could, but doesn't give intuition about "how close to connected"
- Need to find Goldilocks-size graphs
 - If too small, runs fast enough classically
 - If too big, even with medium-scale quantum acceleration, exponential algorithm still infeasible
 - If QPU solves 10% of problem, 2¹⁰ combinations of those may be feasible
 - If QPU solves 1% of problem, 2¹⁰⁰ combinations is not feasible

Next Steps

- Need to verify on data known to have lateral movement
- Need to find scale-appropriate viz that illustrates growth of connectedness (== shrinkage of MIS) for cyber analyst
- Code available via private Github repository
- Looking for collaborators, esp. with data

Agenda

- Detecting lateral movement via maximum independent set
- Achieving high performance with graph kernels on a D-Wave system
- Implications for cyber and other analyses

Two Main Paths to Quantum Computing

Gate-model architecture

- Significant theoretical work since 1985, key algs defined in 1990s
- Major issue of error correction identified by Preskill in 1998
 - Believed to require 100-1000 physical qubits for every logical qubit
- Google recently announced system with 72 physical qubits, results TBD
- Digital nature in question
 - Preskill: "noisy intermediate-scale quantum" (NISQ) computers
- Current focus on approximate optimization algs (e.g., QAOA)

Quantum-annealing architecture

- Nishimori (1998) and Farhi (1999) described theory to find low energy states; Rose (2004) identified path to build such systems
- D-Wave (2010+) has delivered 4 generations of systems, the latest with 2000 qubits
- Academic knowledge is mostly empirical
- Problems friendly to D-Wave topology show ~1000X advantage; real-world problems ~parity
- New system generations every ~2yr

Quantum Annealing: How a D-Wave system works

Programming Model / Quantum Machine Instruction

QUBIT	Quantum bit which participates in annealing cycle and settles into one of Known as ible final states: {0,1}			
COUPLER	- Quadratic unconstrained binary optimization (QUBO) pro	blem		
WEIGHT	- Unconstrained binary quadratic problem (UBQP) - Probabilistic graphical model (PGM)			
STRENGTH	b _{ij} Real-valued constant associated with each coupler , which controls the influence exerted by one qubit on another; controlled by the programmer			
OBJECTIVE	<i>Obj</i> Real-valued function that is minimized during the annealing cycle			

$$\boldsymbol{Obj}(\boldsymbol{b}_{ij};\boldsymbol{q}_i) = \sum_{ij} \boldsymbol{b}_{ij} \boldsymbol{q}_i \, \boldsymbol{q}_j$$

The system **samples** from the q_i that minimize the objective

Note: The D-Wave 2000Q[™] system added reverse annealing, which is a variant of this.

Mapping a Problem to D-Wave

Original form (e.g., **Best known methods** Steps constraints, graph (DNX)) Reduce problem size Map to QUBO form Avoid $O(N^2)$ #var growth **Reduce QUBO** Find frozen variables Decompose QUBO Various: energy impact, recomb elite QUBO Embed into HW graph Avoid long chains, extend pre-embed Tolerate low precision Bin values into discrete ranges HW-compliant QUBO 1.0Igebraic setting 0.8 Fraction of valleys seen s) DW 0.6 is as f(length) **––** SA QMC 0.4► HFS OPUs 0.20.0

 10^{3}

 10^{4}

 10^{5}

 10^{6}

Copyright © D-Wave Systems Inc.

Cumulative annealing time (μs)

 10^{8}

The Quantum Computing Company

 10^{7}

Mapping MIS to QUBO Form

$$\boldsymbol{Obj}(\boldsymbol{b}_{ij};\boldsymbol{q}_i) = \sum_{ij} \boldsymbol{b}_{ij} \boldsymbol{q}_i \, \boldsymbol{q}_j$$

Choose q_i that minimize

Copyright © D-Wave Systems Inc. https://canvas.auckland.ac.nz/courses/14782/files/563551/download?verifier=mGDAXoF3TDAKoZfnjmQ1WBRfjlB0LkTc62wAdyG0&wrap=1

Mapping Traveling Salesperson to QUBO Form

 Many formulations use "for vertex i at step k" approach, which is O(N²)

$$Obj(b_{ij};q_i) = \sum_{ij} b_{ij}q_i q_j$$

Choose q_i that minimize

Explicitly Hybrid Quantum/Classical Algorithms

- Due to Chapuis et al.
- CPU/GPUs and QPUs have drastically different natures; use each for its strengths
- Use classical techniques (k-core graph and core/halo partitioning) to partition graph into subgraphs that will fit in QPU, find max clique of each
 - Limited to finding cliques embeddable in the QPU

Chapuis, Djidjev, Hahn, and Rizk, "Finding Maximum Cliques on the D-Wave Quantum Annealer"

Cause for Optimism

NP-hard Problems Solved in Modern Compilers

- Graph coloring
- Set-weighted covering
- Topological sort
- Graph coloring
- Minimal vertex covering
- Maximum weighted path cover
- Multiple graph partitioning

Code generation Register sufficiency Instruction scheduling Register allocation, coalescing, minimizing spill, and reuse Global reference allocation Array unification Distributed memory layout

Delivering Differentiated Performance

- Today (D-Wave 2000Q[™]): In practice, problems of **~64 variables** fit on the QPU
- Next-gen D-Wave system targeted at 4-5K qubits with denser topology

Aspect	Change	Effect on #variables in QMI	Notes
More qubits	2-2.5X more	* 1.4-1.6	
Denser topology	2.5X more	* 2.8	Higher perf due to shorter chains
QA changes	TBD		Lower noise, ◊
Better algs/tools		* 1.3	(e.g.) RBC embedding
Aggregate change		* 5.46 == 326 vars	

 Some problems shift from classically tractable to intractable between 64 and 326 variables: e.g., Markov networks (~50 today; 100s intractable)

♦ Roy et al.'s "Boosting integer factoring ..." showed that per-qubit advance/delay of annealing in some cases led to a 1000X performance increase (i.e., fraction of valid results)

Agenda

- Detecting lateral movement via maximum independent set
- Achieving high performance with graph kernels on a D-Wave system
 - Implications for cyber and other analyses

Detecting LM via MIS is Only One Use Case

- Current DWave_NetworkX kernels
 - Minimum vertex cover
 - Minimum vertex coloring
 - Maximum independent set
 - Maximum cut
 - Structural imbalance
 - Maximal matching

• N.B.: graph partitioning, community detection, and maximum clique implemented by LANL

https://arxiv.org/pdf/1705.03082.pdf https://arxiv.org/pdf/1801.08649.pdf

Min Vertex Cover (MVCov)

- A vertex cover V' of an undirected graph G = (V,E) is
 a) a set of vertices where every edge has at least one endpoint in the vertex cover V',
 b) a subset of V such that uv ∈ E ⇒ u ∈ V' ∨ v ∈ V'
- A minimum vertex cover is a vertex cover of smallest possible size (# vertices)

Cyber Use Cases

 In wireless sensor network, MVCov⁺ equates to a plan for installing a patch that minimizes the #rounds while preserving full observability throughout

https://infoscience.epfl.ch/record/225623/files/EPFL TH7484.pdf

MVCov is the optimal solution for worm propagation and hence
 for network defense

Dharwadker and Pirzada, Applications of Graph Theory, ISBN 1466397098

• To make the internet more robust, want better understanding of AS-level topology, but currently BGP data is being gathered from an incomplete and biased subset of ASes. MVCov⁺ calculates the minimum set of watching ASes that can supply data for a comprehensive view of the internet.

https://isolario.it/extra/publications/papers/BGPIncompleteness.pdf

Related Use Case: Topological Data Analysis (TDA)

- E. Munch: "Find and quantify structure in noisy, complex data."
- TDA's Mapper capability commercialized by Ayasdi
- Persistent homology capability highlights the "relative prominence of homological features in the data set"

TDA / Persistent Homology (cont.)

- Believed to have high analytic value
 - Can serve to identify features on which machine learning learns
- Core kernels include:
 - Wasserstein (earthmover) distance between two distributions
 - minimum clique cover
- To date, min clique cover has been so expensive to compute that #dimensions analyzed is sharply limited, reducing analytic value
- D-Wave implementation of Wasserstein distance by Berwald et al.
- Exploring open-source release

Copyright © D-Wave Systems Inc.

We implemented a compute-intensive graph kernel that finds lateral-movement-like behavior in netflow data and can execute quantumly in part. We sketch the remaining work to deliver quantum acceleration from graph kernels. We believe this enables a valuable new set of tools for cyber analysts.

For More Information, See

D-Wave Users Group Presentations:

- 2018 (N.America): https://www.dwavesys.com/qubits-north-america-2018
- 2018 (European): https://www.dwavesys.com/qubits-europe-2018
- 2017: http://dwavefederal.com/qubits-2017/
- 2016:

https://dl.dropboxusercontent.com/u/127187/User%20Group%20Presentations_selected/Qubits_User_Group_Presentations_Index.html

LANL Rapid Response Projects:

 http://www.lanl.gov/projects//national-security-educationcenter/information-science-technology/dwave/index.php