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Sparse Matrices Evaluated

§ Work distribution and load balancing is of similar importance to 

reducing migrations in order to achieve high performance.

§ Explicitly enforcing hardware load balancing for the Emu 

architecture is difficult due to thread migrations. Specifically, data 

placement and access patterns dictate the work performed by a 

given hardware resource and is irrespective of how much work is 

initially delegated to each processing element.

§ Use of matrix reordering is more beneficial on the Emu 

architecture than a traditional cache-memory based system. We 

found that performance can be increased by as much as 70% on 

Emu while we observed a maximum gain of 16% on a traditional 

architecture. A random reordering can exhibit better performance 

on Emu than not reordering at all, which contradicts what we 

observe on a traditional system. 

Conclusions

Implementation

Name Rows Non-Zeros Density
ford1 18K 100K 2.9 x 10-4

cop20k_A 120K 2.6M 1.79 x 10-4

webbase-1M* 1M 3.1M 3.11 x 10-6

rmat* 445K 7.4M 3.74 x 10-5

nd24k 72K 28.7M 5.54 x 10-3

audikw_1 943K 77.6M 8.72 x 10-5

CSR matrix distributed across 4 nodelets

Abstract Work Distribution Strategies

Spy plots for cop20k_A when reordered

Load Balancing via Matrix Reordering

Results: Matrix reordering can improve SpMV performance on Emu by as much as 

70% while a comparable SpMV implementation executed on a traditional architecture 

only receives at most a 16% improvement from matrix reordering.

Sparse linear algebra kernels are a crucial component in many large-

scale data analytic applications, such as tensor decomposition and 

graph analytics. Many of these kernels are comprised of Sparse 

Matrix-Vector Multiplication (SpMV), which is one of the 

fundamental operations in linear algebra. Achieving high 

performance for SpMV on today’s cache-memory based systems is 

challenging due to irregular access patterns and weak locality. To 

address these challenges, novel systems such as the Emu 

architecture have been proposed. The Emu design uses light-weight 

migratory threads, narrow memory, and near-memory processing 

capabilities to address weak locality and reduce the total load on the 

memory system. 

In this work, we evaluate the impact of traditional optimizations for 

SpMV on the Emu migratory thread architecture. Our goal is to gain 

insight into the cost-benefit tradeoffs of standard sparse algorithm 

optimizations on Emu hardware.

Emu Architecture
The basic building block of an Emu system is a nodelet which 

consists of the following:

§ Gossamer Cores (GCs): general purpose, cache-less processors 

that support up to 64 concurrent light-weight threads

§ Narrow Channel DRAM: eight 8-bit channels rather than a 

single, wider 64-bit interface

§ Memory-side Processor: performs atomic and remote 

operations

8 nodelets are combined together to make up a single node in the 

Emu architecture, as shown below.

When a thread on a GC makes a memory request to a remote 

address, a migration is generated. A migration involves:

§ A GC issuing a request to the Nodelet Queue Manager (NQM) to 

migrate the thread context to the nodelet where the desired 

data resides

§ The thread contexts waits in the source nodelet’s migration 

queue until it is accepted by the Migration Engine (ME), which is 

the communication fabric that connects multiple nodelets

§ Once accepted, the thread context is sent over the ME and is 

processed by the destination nodelet’s NQM.

The size of a thread context is roughly 200 bytes.

We leverage the Compressed Sparse Row (CSR) storage format to 

store sparse matrices, where blocks of rows are distributed to each 

nodelet. An example of this distribution is shown below. 

The optimizations we consider in this work are work distribution 

strategies and matrix reordering techniques.

Obtained from the University of Florida Sparse Matrix Collection. 

RMAT matrix generated with a = 0.45, b = 0.22 and c = 0.22  All 

matrices are square. “*” denotes non-symmetric matrices.

§ Row: Evenly divide the rows amongst the nodelets

§ Non-zero: Assign rows to such each nodelet receives roughly the same number of 

non-zeros.

Results: Distributing by non-zero provides more uniform load balancing by enforcing 

each nodelet to issue a comparable amount of memory instructions. This leads to 

better overall performance for SpMV.

Despite efforts to lay out and distribute work evenly across the nodelets, all of the 

threads could migrate to a single nodelet and oversubscribe that nodelet's resources. 

Known matrix reordering techniques can be used to encourage more consistent load 

balancing. 

§ BFS and METIS: cluster non-zeros on the main diagonal and produce balanced 

rows. 

§ Random: uniformly spreads out the non-zeros. 


