Geospatial Cloud Analytics: The Confluence of Commercial Space and the Computing Revolution

Dolores Shaffer, Science and Technology Associates for

Dr. Joseph B. Evans, Program Manger, DARPA/STO

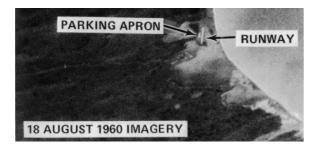
Chesapeake Large-Scale Analytics Conference

30 October 2018

Trends in geospatial data and computing

Geospatial Cloud Analytics: origins and objectives

Scalable Data Platforms


Analytics

Geospatial awareness – everywhere, anytime

Early Space Age

Sensing

Today

Revisit

Computing

Lack of global data

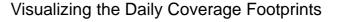
- Government satellites high resolution, limited coverage, stovepiped operations
- Traditional commercial satellite constellations limited coverage, and fragmented marketplace
- No comprehensive commercial repository of multimodal data exists

Earth: 510 million km²

Earth's Landmass: 148 million km²

Imagery Source	Resolution	Revisit Rate	Coverage per Day
Landsat NIR/SWIR	30m	Weekly	13 million km ²
Sentinel 1	20m	Weekly	
Sentinel 2	10m	Weekly	11.6 million km ²
WorldView 2	1.85m	3.7 days	1 million km ²
WorldView 3	1.24m	4.5 days	0.68 million km ²

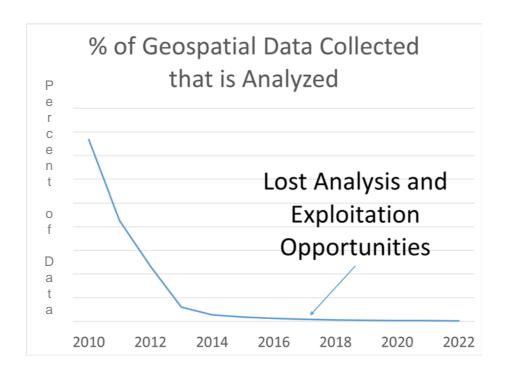
Filling the gap: New commercial space industry – small satellites



• New, large constellations offer extensive coverage with a high revisit rate

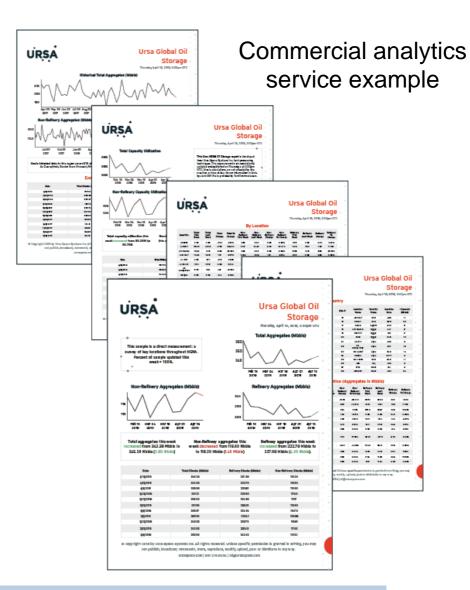
Earth: 510 million km² Earth's Landmass: 148 million km²

Imagery Source	Resolution	Revisit Rate	Coverage per Day
RapidEye	5m	5.5 days	6 million km ²
SkySat	0.9m	Daily	21 million km ²
PlanetScope	3m	Daily	150 million km ²


- Multiple modalities optical, SAR, RF
- Really big data
 - PlanetLabs' global coverage with daily revisit = 9 PB/year
 - Digitalglobe collects 100 TB/day = 36 PB/year, various bands and resolutions

Current approaches limit exploitation of new sensor constellations

- Inability to scale analytic processing and techniques
 - Data analysis dominated by labor intensive, manual techniques
 - Does not scale to tsunami of data from new satellite constellations
- Constraints on analytics services for DoD users
 - Typical path is through defense intelligence community



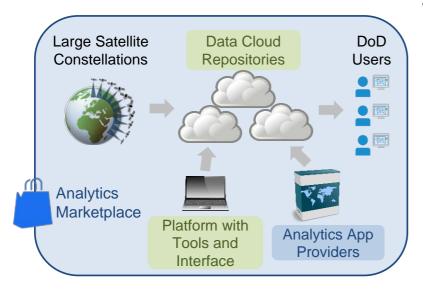
There are new opportunities for exploitation

- Vast amount of data from new commercial satellite constellations enables exploitation of geospatial analysis as a big data problem
 - Research has demonstrated the ability to use disparate data sources such as Planet imagery, OpenStreetMaps, and Wikipedia to observe maritime behavior
- Confluence of technologies combine extensive coverage and high revisit rates with cloud, big data, machine learning approaches
- Today: days-to-weeks timelines limited by data collection and processing
- Tomorrow: Global, continuous automated multisource change detection

Can we provide analysis services rather than pixels for DoD warfighters?

Geospatial Cloud Analytics (GCA)

GCA will demonstrate rapid global analytics


 Objective – Develop technology to access & analyze global scale commercial geospatial data and pilot an analytics-as-a-service business model

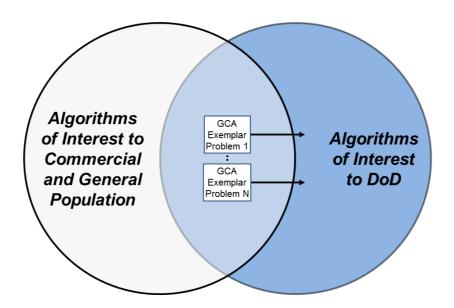
Current approach cannot satisfy analytics demand

- DoD (e.g., COCOM) cannot monitor militarily relevant events/changes on a global, near real time scale
- Global scale analytics need multimodal data
- Global-level I&W missions / analytics do not exist

GCA approach

- Vision: Let experts focus on analyzing versus gathering and curating - data from individual sources
- Create cloud-based multi-source/multi-modal data repository
- Demonstrate ability for analytics to scale globally
- Create analytics marketplace to ease DoD use

I&W: Indicators and Warnings

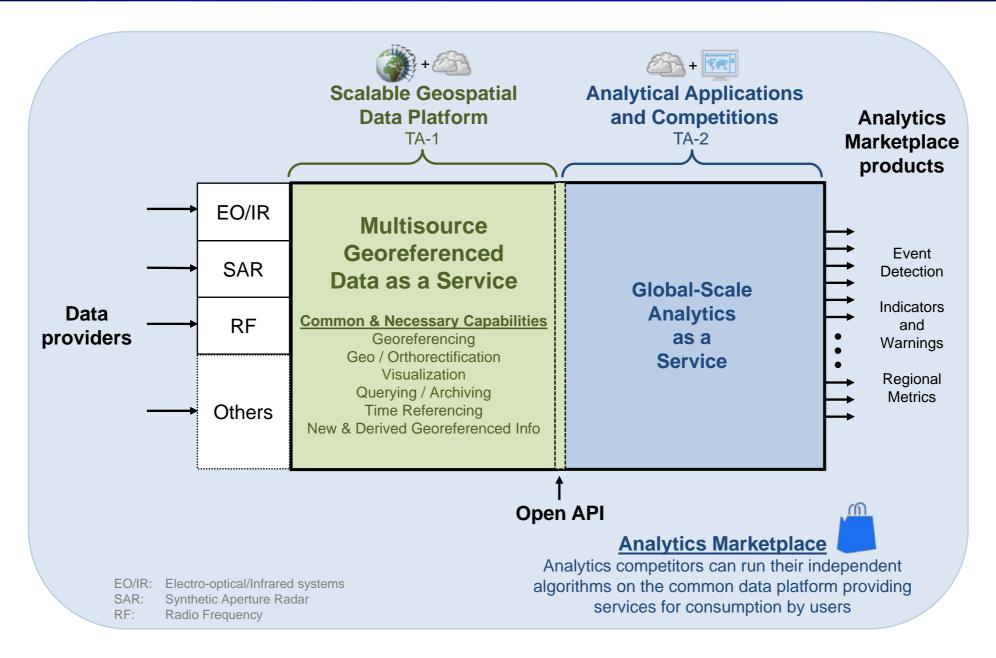

COCOM: Combatant Command

Commercial geospatial data and analytics can be applied to DoD problems

- Many analytics of value to non-DoD applications are directly or near-directly applicable to DoD analytics needs
 - I&W of major events, threat activity / trends, etc.
 - Find and track fleeting high-value targets
 - Discover hidden and unknown sites, and understand purpose of enigma sites
 - Discover and provide attribution for gray zone

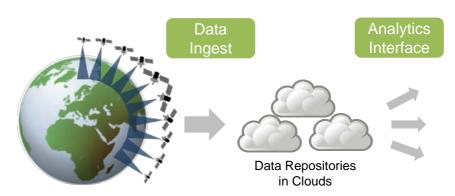
Processing and algorithmic scalability by coupling commercial scale and novel analytics

A new approach – global cloud repository, scalable analytics, competitive marketplace


- Cloud-based multi-source/multi-modal data repository
 - Virtually centralized access to physically distributed data
 - Automated tools to curate data & metadata
- Scalable analytics
 - Global coverage, multi-modal processing
 - Co-use or leveraged analytics techniques
- Competitive analytics marketplace
 - Explore business models that encourage participation of data, analytics platform, and 3rd party app providers
 - For example, "app store" analytics platforms that create a sustainable ecosystem

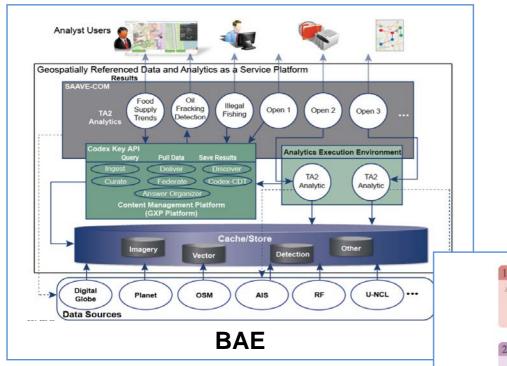
Today: Days-to-weeks timelines limited by data collection and processing Tomorrow: Global, continuous automated multi-source change detection

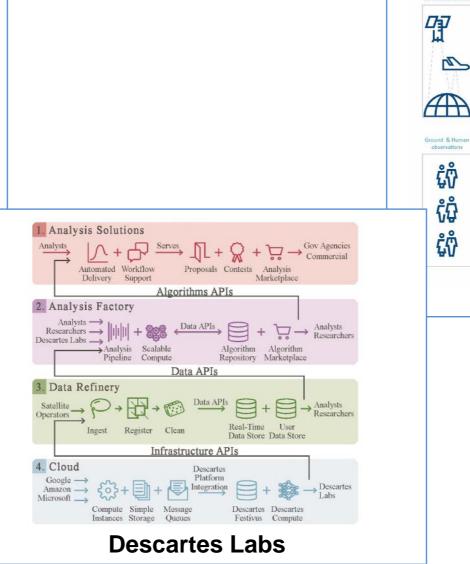
Program structure



TA-1: Scalable geospatial data platform

- TA-1 enables TA-2 to focus on analysis
 - Gather and clean data
 - At least 10 sources
 - EO/IR
 - SAR
 - RF
 - Other
 - Fast query capability
- TA-1 performers
 - BAE Systems
 - Descartes Labs
 - Digitalglobe


Scalable, cloud-based platform for easy ingestion and use of satellite imagery



GCA performers

TA – 1: Scalable geospatial data platform

ζů

ζŮ

DigitalGlobe

TA-2: Analytical applications and demonstrations

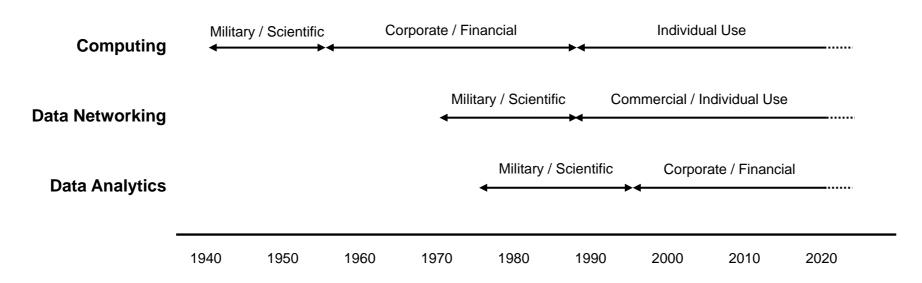
Challenges

- Scaling applications for global coverage
- Exploiting a mixture of sensor modalities for analytics
- Approach: challenge problem areas
 - Four problems (strategic, tactical, operational, and open)
 - Demonstrations designed to validate scalability and analytic utility

Solutions

- Remote sensing techniques
- Machine learning
- Hybrid solutions
- Multiple data sources to reduce processing and improve accuracy

DARPA GCA TA-2 performers


	Strategic	Operational	Tactical	Open	Notes
Textron	X				Global food forecasting platform
Descartes Labs	X	X			Strategic: Food security in selected locations Operational: Automated deep learning broad area search for fracking activity
Lockheed Martin		X			Convolutional neural networks for classification
Raytheon			X		Pattern of life characterization
BAE Systems			X		Incorporation of behavioral data
SRI				X	Trafficability analysis
DZYNE				X	Humanitarian assistance and disaster recovery assessment (HA/DR)
VSI				X	Global digital elevation model (DEM)
Draper				X	Economic instability reports
Analytic Strategies				X	Global protest detection using mobile data

GCA analytics marketplace

Technology Market Evolution Examples

- Service Level Agreements (SLAs) for analytics services
- Government purchases services, rather than software or labor

Objective: Lower barriers to entry to providing DoD analytics

- → More non-traditional performers and capabilities
- → Look at more problems
- → Stay on the cutting edge

- Phase 3 Overview
 - This BAA solicits only for Phases 1 and 2
 - Phase 3 will be a separate solicitation and will focus on creating an analytics-as-a-service marketplace

- Business model
 - Proposals should include a business model to serve as the basis for Phase 3
 - This will be further refined to reflect lessons learned during Phases 1 and 2
 - Example
 - The Government may ask for the answer to a specific question about crop growth trends over the past 10 years in a particular region, then competitively procure an answer to the question through the GCA marketplace.

DARPA TA-2: Food security analytics

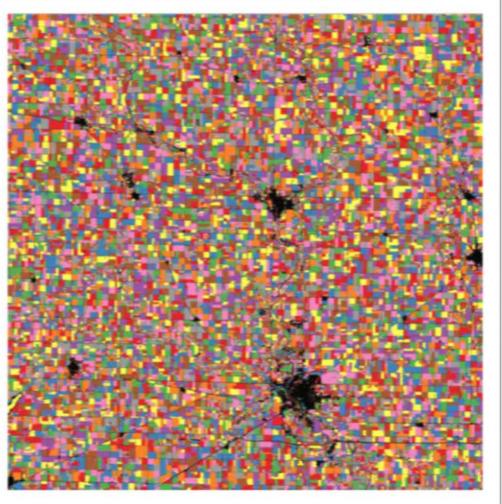
- Problem area: Predicting food supply trends for a crop in a region of the world
- Timeline: Weeks to months
- Why we care: precursor to civil unrest
- Conventional approach relies on government reporting
 - Timeliness
 - Accuracy
- Performers
 - Textron subcontractor Geosys, a Land O'Lakes company
 - Descartes Labs (example follows)

Food security example: Descartes Labs approach

DESCARTES LABS 4

Technical Approach

Segment


- Detect functional field boundaries
- Identify persistent edges across a multiensor deep temporal stack

Classify

- Pixel·level classification of Wheat vs NeWheat, per season.
- Useful both for acreage and as a mask for health metrics.

Monitor

- Develop crop health metrics
- Relative crop conditions derived from NDV
- Ideally, measure absolute conditions, e.g. yield (kg/ha) and production (kg)

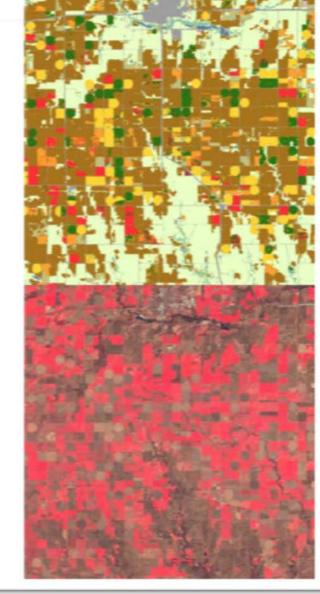
Food security example: Descartes Labs approach

DESCARTES LABS

Technical Approach

Segment

- Detect functional field boundaries
- Identify persistent edges across a multiplication deep temporal stack


Cropland Data Layer

Classify

- Pixel-level and field-level classification of Wheat vs NorWheat, per season.
- Useful both for acreage and as a mask for health metrics.

Monitor

- Develop crop health metrics
- Relative crop conditions derived from NDVI
- Ideally, measure absolute conditions, e.g. yield (kg/ha) and production (kg)

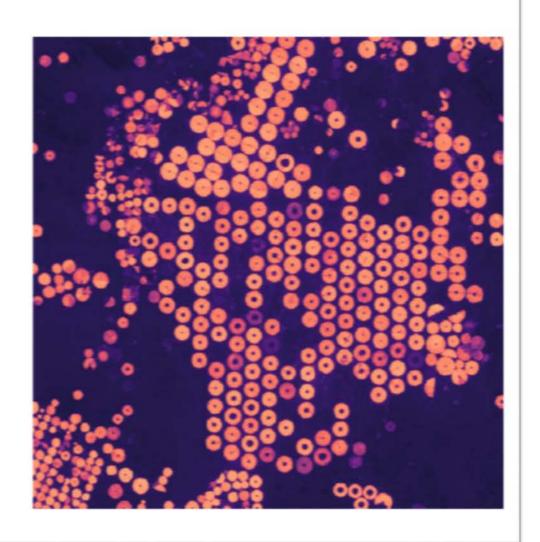
Sentinel-2 NIR

Food security example: Descartes Labs approach

DESCARTES LABS

Technical Approach

Segment


- Detect functional field boundaries
- Identify persistent edges across a multensor deep temporal stack

Classify

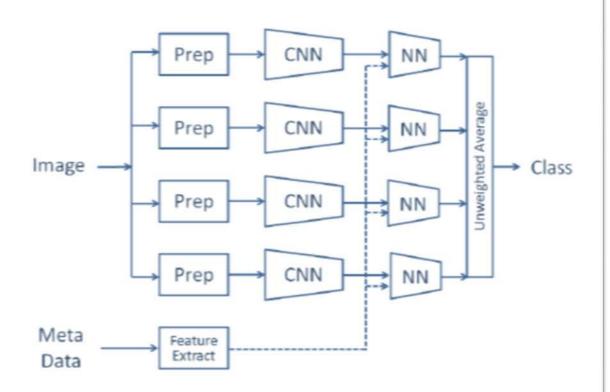
- Pixel-level classification of Wheat vs NdVheat per season.
- Useful both for acreage and as a mask for health metrics

Monitor

- Develop crop health metrics
- Relative crop conditions derived from NDVI
- Ideally, measure absoluteonditions, e.g. yield (kg/ha) and production (kg)

TA-2: Fracking construction detection analytics

- Problem area: Locating the construction of oil fracking sites
- Timeline: Days to weeks
- Why we care: oil supply monitoring
- Constructed in stages
 - Monitoring
- Conventional approach is reviewing permit information, visiting sites
- Performers
 - Descartes Labs subcontractor Draper
 - Lockheed Martin (example follows)



Fracking detection example: Lockheed Martin approach

OUR SOLUTION: CNN ENSEMBLE WITH METADATA

- We developed an ensemble of deep convolutional neural networks (CNNs).
- We integrated satellite image metadata in the system:
 - Improved accuracy by 3.5%
- We coded in Python and used open source software for deep learning:
 - Keras
 - TensorFlow
- We classified image chips into 62 object and facility classes
 - Runways, ports, shipyards, towers, oil facilities, tunnel openings, etc

M. Pritt and G. Chern, "Satellite Image Classification with Deep Learning," Proceedings of IEEE AIPR Workshop, 12 Oct 2017

Fracking detection example: Lockheed Martin approach

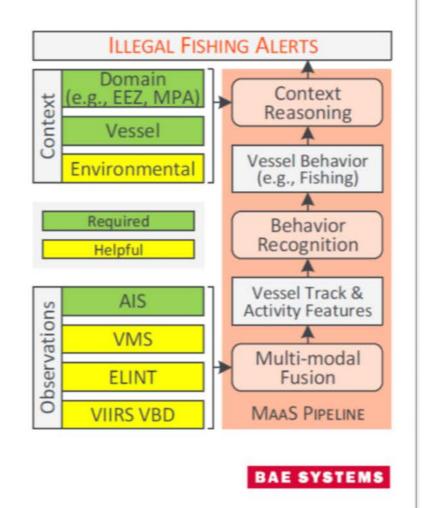
DARPA GCA: FRACKING DETECTION

- We will extend our algorithms to the problem of detecting oil and gas fracking wells.
- Fracking wells are large structures with distinctive features and temporal changes:
 - Pad construction: land clearing, grading
 - Drilling: heavy equipment and drilling rig
 - Fracking: more heavy equipment and pond
 - Production: well pad shrinks

Goal: Regional detection and monitoring

TA-2: Illegal, Unreported, & Unregulated (IUU) fishing detection

- Problem area: Maritime change detection and illegal fishing
- Timeline: Minutes to hours
- Why we care:
 - 3+ billion people rely on seafood as their primary source of protein
 - 90% of the world's fish stocks are either overfished or fully exploited
 - \$23+ billion worth of seafood is stolen from the seas annually
 - Contributes to civil unrest
 - Similar to detecting other ocean-based illegal activities
- Conventional approach: patrol boats
- Performers
 - Raytheon
 - BAE Systems (example follows)



IUU example: BAE Systems approach

- MaaS monitors maritime activity in three steps:
 - Multi-modal Fusion (MMF) learns discriminative features via compact joint representations over multiple sources
 - Behavior Recognition (BR) learns novel classes from few examples in category hierarchies
 - Context Reasoning (CR) identifies when vessel behaviors & domain conditions are consistent with illegal fishing
- Maximal exploitation of data improves results
 - MMF treats data sources jointly
 - BR model complexity is data-driven
 - CR performs probabilistic inference over domain-specific data

© 2018 BAE Systems

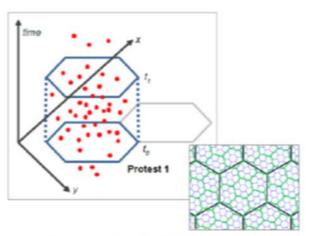
DARPA TA-2: Open category analytics

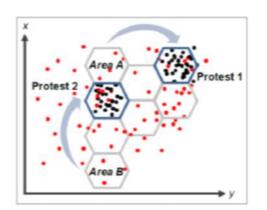
Who	What	Why
Analytic Strategies	Protest Detection	Detect unrest
Draper	Instability Index	Detect unrest
DZYNE	Trafficability	Humanitarian Assistance / Disaster Recovery
SRI	Trafficability	Humanitarian Assistance / Disaster Recovery
VSI	3D DEM	Disaster assessment

Protest detection: Analytic Strategies approach

Overview

- Open Call Competition: Global Protest Detection Algorithm will use device data that can emanate from over half of the world's population
 - Uses <u>commercial</u> high-quality location data previously only available via classified signals intelligence (SIGINT)
 - Does not rely on billion-dollar satellites, network taps, human assets, or other means of collection
 - Provides access to a large number of devices running ad-enabled apps, growing in size with IoTs
 - · Publicly-available information
 - · Anonymous in raw form
 - · Platform, operating system, network, and cell independent
 - SIM independent an ad ID to a physical device remains the same unless it is reset
- Data works day or night in cloudy or sunny conditions; ubiquitous
- We seek better use cases for this data source, versus "lone wolf"
- Data Scales globally, and it is possible to provide NRT alerts



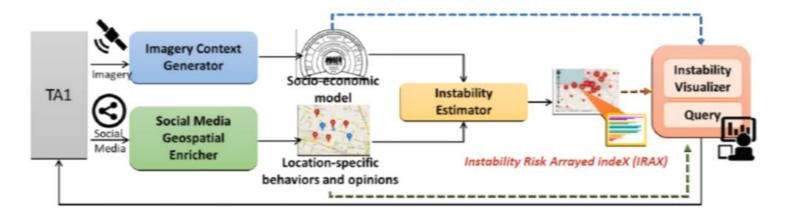

Protest detection: Analytic Strategies approach

Approaches

- Recognize salients in space & time over the norm in high-risk areas leveraging a localized DGG
- Train model to recognize high-risk areas and repeat devices on prior observed protests

- Recognize aggregations from areas that conform to similar areas of origination (here Area A and Area B are statistically very similar as well as destination locations)
- Train model to recognize movement patterns from different device clusters but having similar contexts or profiles

- Geographic Diversification
- Performance Segmentation
 Seek utility in size, type, vendor, and time
- Increment Effectiveness
 Focus on gains in model effectiveness



Instability index: Draper approach

Global Anticipation of Instability through Novel Economic Reasoning (GAINER)

 TA2 Open Challenge Problem: Generate localized, reliable, timely instability estimates to support military leaders at all echelons

- Fuse stable contextual information with transient social indicators
 - Stable: socio-economic indicators from commercial imagery, linking physical structures and societal features
 - Transient: location-specific PMESII information extracted from social media
- Cloud-based operation at scale near real time

2

DARPA HA/DR: DZYNE Technologies approach

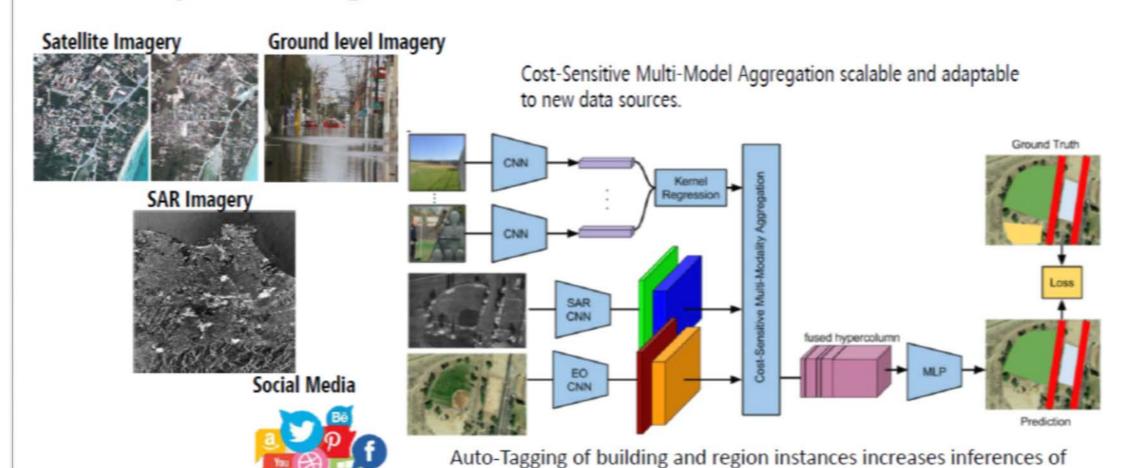
Road closure due to washed out road Road closure due to down powerlines

Road closure due to elevated water level

DZYNE Technologies HA/DR Open Competition

- Road traversability geospatial analytics
 - Identify road blockage
 - Traffic congestion, debris, washed out road
 - Characterize level of blockage
 - · Traversable by various class of transport
 - Define feasible routes to critical infrastructure
 - Power station, water treatment, hospital, police/fire station, government building
- Real-time analysis of affected area
 - Live updates of road conditions
 - Dynamically analyze feasible routes
- Image resolution requirement
 - Temporal resolution hours to weeks
 - Spatial resolution 30 cm 1 m
 - Elevation angle 60 90 degrees

Geospatial situational awareness for disaster management



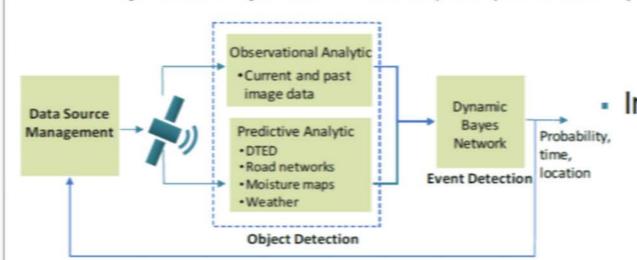
HA/DR: DZYNE Technologies approach

DZYNE

Deep Learning Innovation

routable network. Pixel-wised detected roads are converted into a

vector model for greater flexibility of traversability analysis.

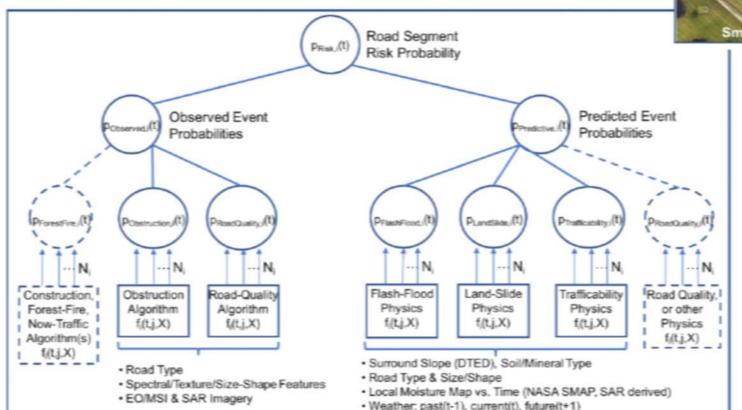


Trafficability: SRI approach

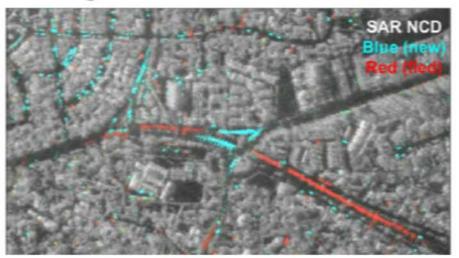
SURPAS: SUpply Route Predictive AnalyticS

- Supports optimized route planning by detecting and predicting objects and events
 - Flash floods, landslides, obstructions
 - Non-trafficable or poor quality roads and local bypass shoulders
- Accurate predictions of terrain dynamics with
 - Fully distributed, processed based hydrology model
 - Precision soil moisture mapping model
 - Dynamic Bayesian Network (DBN) event risk probability model

- In the general I&W OCEAN framework:
 - Objects are road impediments, scene changes, and hydrological events
 - DSM ensures only use of important, high confidence data sources



DARPA Trafficability: SRI approach

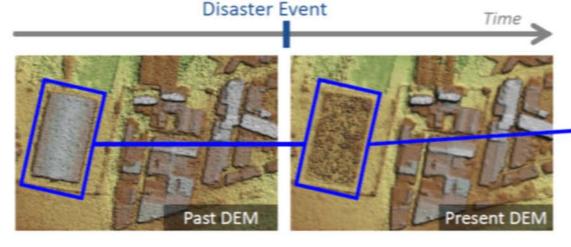

SURPAS: SUpply Route Predictive AnalyticS

 DBN space/time integrates both observed and predicted events to quantify risk level along routes of interest

- Road Quality: EO/MSI/SAR extracted spectral, texture, & shape features
- Obstructions: EO/MSI/SAR based changed detection & localization

Global digital elevation model: VSI approach

TA-2 Open Application


Global Disaster Assessment from Digital Elevation Models (DEMs)

- VSI DEMs from satellite imagery
- Compare DEMs from different epochs

- · Change boundaries yield quantitative disaster assessment
- Meaningful descriptions (hospital, school, airfield) from geospatial feature databases

ID	Location	Volume	Status	Description
1	(Lat,Lon)-1	1200 m ³	Demolition	Warehouse
		***	. 860	***

2018.09.18 Vision Systems Inc. • GCA Phase 1 • Kickoff

- Trends in geospatial data and computing
 - Big data getting bigger
 - Cloud-based repositories are feasible
- Geospatial Cloud Analytics
- Scalable Data Platform
 - Let experts focus on analyzing
- Analytics
 - Demonstrate ability for analytics to scale globally

Can we provide analysis services rather than pixels for DoD warfighters?

