
AGS-GNN: Attribute Guided Sampling for Graph Neural Network
Siddhartha Shankar Das‡, SM Ferdous†, Mahantesh Halappanavar†, Edoardo Serra*, Alex Pothen‡

Purdue University‡, Pacific Northwest National Laboratory†, Boise State University*

Contact: das90@purdue.edu

Abstract Proposed Method: AGS-GNN

Results

We introduce an Attribute-Guided Sampling (AGS) framework 
for Graph Neural Network (GNN), which addresses the scaling 
challenges of graph representation learning under varying levels 
of homophily and heterophily. The framework leverages 
unsupervised and supervised sampling strategies, optimizing the 
subgraph selection based on features and structure. AGS utilizes 
the nearest neighbor to encourage homogeneity and submodular 
optimization to ensure diversity in the neighborhood of a selected 
sparse subgraph. AGS-GNN is the only inductive scalable GNN 
for large heterophilic graphs in the literature. Experimental results 
on wide ranges of benchmark datasets demonstrate the 
effectiveness of AGS-GNN, yielding improved performance and 
faster convergence compared to traditional methods and even 
outperforming baselines and state-of-the-art approaches in various 
scenarios.

Assumption: The nodes with similar features tend to have 
the same label.
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𝑁 𝑢  represents the neighbors of node 𝑢. A graph with a low 
homophily score is termed heterophilic; 

Graph Sampling

Pre-computation

Node Sampling

For homophilic graphs,  only nearest neighbor (NN) samples (Fig. 4a) can be good enough to get high prediction 
accuracy. For certain very large dense homophilic graphs, only diverse samples from submodular (Sub) (Fig. 4b) can 
be beneficial as it selects better representative samples. For heterophilic graphs, nodes can be either homophilic or 
heterophilic and thus it’s better to consider both samples and left the decision to a MLP  (Fig. 4c, 4d) to adaptively 
learn. 

We can incorporate heuristics in the sampling process using 
edge-disjoint subgraphs. Consider the heuristic of ensuring 
connectivity among sampled nodes. Compute k-edge-disjoint 
Maximum Spanning Tree (MSTs) for a graph and combine 
them to get a sparse representation of the original graph. 
Sample a few and merge them to obtain the sparse graph and 
sample from the left-over graph using a weighted random 
walk to ensure non-zero probability for each edge. Subgraph 
selection examples choice include k-NN, b-matching, and 
Spectral Sparsifier.

Similarity metric Learning: Without an appropriate similarity metric between node features, we can learn a 
straightforward edge weight prediction model from the known labeled data and given graph edges and non-edges. 

K-NN weight assignment: k-nearest neighbor-based rankings are used to fit specific probability density function.

Submodular optimization weight assignment: Submodular functions have diminishing returns property. We rank the 
neighbors of a vertex based on the gains. We get diverse neighborhoods for each vertex depending on the node features 
and appropriate functions. . Example functions are coverage-based, feature-based, and facility location. 

Fig. 2 shows how k-nearest neighbor and k-neighbor selection from 
submodular optimization-based ranks change homophily relative to 
random k-neighbor subgraph selection.

Fig. 4 different ways weighted sampling can be used in 
conjunction to the GNNs

Fig. 5 Graph G is split into a collection of disjoint edges 
(spanning tree is used), and then we sample such subgraphs to 
get a sparse graph, G′ = g1 + g2 for an epoch.

Preliminaries

Acknowledgements: We used the institutional computing 
resources at the PNNL and Purdue University. We highlight only 
the core part of the work; for more details, contact the authors.

Table 1 shows the F1 measure of the node classification task for 
heterophilic graphs. Here, AGS-GNN is compared against 
homophilic (GraphSAGE, GraphSaint) and heterophilic (LINKX, 
ACM-GCN) works. 

Fig. 1 shows F1 scores of a synthetic graphs in different ranges 
of homophily using homophilic and heterophilic GNNs
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