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Abstract

We introduce an Attribute-Guided Sampling (AGS) framework
for Graph Neural Network (GNN), which addresses the scaling
challenges of graph representation learning under varying levels
of homophily and heterophily. The framework leverages
unsupervised and supervised sampling strategies, optimizing the
subgraph selection based on features and structure. AGS utilizes
the nearest neighbor to encourage homogeneity and submodular
optimization to ensure diversity in the neighborhood of a selected
sparse subgraph. AGS-GNN 1s the only inductive scalable GNN
for large heterophilic graphs in the literature. Experimental results
on wide ranges of benchmark datasets demonstrate the
effectiveness of AGS-GNN, yielding improved performance and
faster convergence compared to traditional methods and even
outperforming baselines and state-of-the-art approaches in various
scenarios.

. Preliminaries

Assumption: The nodes with similar features tend to have
the same label.
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N (u) represents the neighbors of node u. A graph with a low
homophily score 1s termed /eterophilic;

Node Homophily: h, 4 . Here,

Synthetic squirrel graph with average degree d = 42

. Synthetic Chameleon graph with average degree d = 16
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Fig. 1 shows F, scores of a synthetic graphs in different ranges
of homophily using homophilic and heterophilic GNNs
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Fig. 2 shows how k-nearest neighbor and k-neighbor selection from
submodular optimization-based ranks change homophily relative to
random k-neighbor subgraph selection.
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. Proposed Method: AGS-GNN
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(b) Node Sampling and Graph Sampling

. Pre-computation
Stmilarity metric Learning: Without an appropriate similarity metric between node features, we can learn a
straightforward edge weight prediction model from the known labeled data and given graph edges and non-edges.

K-NN weight assignment: k-nearest neighbor-based rankings are used to fit specific probability density function.

Submodular optimization weight assignment: Submodular functions have diminishing returns property. We rank the
neighbors of a vertex based on the gains. We get diverse neighborhoods for each vertex depending on the node features
and appropriate functions. . Example functions are coverage-based, feature-based, and facility location.
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. Graph Sampling

We can incorporate heuristics in the sampling process using
edge-disjoint subgraphs. Consider the heuristic of ensuring
connectivity among sampled nodes. Compute k-edge-disjoint
Maximum Spanning Tree (MSTs) for a graph and combine
them to get a sparse representation of the original graph.
Sample a few and merge them to obtain the sparse graph and
sample from the left-over graph using a weighted random
walk to ensure non-zero probability for each edge. Subgraph
selection examples choice include k-NN, b-matching, and
Spectral Sparsifier.
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a) Original graph, G c¢) Subgraph, g2
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d) Subgraph, g3

b) Subgraph, gl

f) Sampled graph, G' ¢) Remaining graph, g4

Fig. 5 Graph G is split into a collection of disjoint edges
(spanning tree 1s used), and then we sample such subgraphs to
get a sparse graph, G' = gl + g2 for an epoch.

. Results

Algorithm 1: AGS-GNN-NS(G,X)

. Input : Graph G(V, F), Feature matrix
. Node Sampling put = Craph CL v )
Parameter: Heuristic or learnable similarity
i ° measure
1: R; = Nearest-Neighbor(G, X)
é\ @ Seed node 2: Ry = Submodular(G, X)
/ / / \ )j @ NN sample 3: for epoch in epochs do
~_ 4:  nodes = BatchOfTrainingNodes(G)
/E\I /D © Sub sample /* random nodes from
@9 O% 1 GNN layer training vertices */
. 5: g1 = NodeSample(R;, nodes, neighbors)
RARE £REN dndndng e o e e
6: go = NodeSample( Rz, nodes, neighbors)
a) b) C) d) /+* for heterophily «/
. : : : : 7. output = modely(g1, g2)
Fig. 4 different ways weighted sampling can be used in 8:  compute loss for nodes and update 0
9: end for

Heterophilic GSAGE GSAINT LINKX{ ACMGCN AGS-NS AGS-GS
Graphs 7 o 7 o 7 o 7 o 7 o 7 o
Cornell 71.35 6.07 | 67.03 3.15 | 76.76 432 | 7459 1.32 | 7459 2.16 | 70.27 4.83

Texas 7730 5.57 | 79.46 6.53 | 81.62 2.02 | 8432 7.13 | 8486 6.19 | 80.00 5.57
Wisconsin 79.61 3.64 | 79.61 6.86 | 83.53 4.74 | 8431 3.28 | 8196 4.71 | 85.10 6.49
reed98 61.87 0.53 | 64.15 0.69 | 66.63 137 | 66.11 1.25 | 66.74 1.37 | 64.66 0.89
amherst41 66.62 0.33 | 69.57 0.71 | 78.64 035 | 78.12 0.30 | 79.19 047 | 77.14 0.90
penn94 75.65 042 | 75.11 0.33 | 85.92 0.32 | 8538 0.53 | 76.06 0.41 | 81.56 0.45
Roman-empire | 79.52 042 | 77.51 047 | 59.14 045 | 71.42 0.39 | 80.49 048 | 75.38 0.25
cornell5 69.22 0.12 | 68.10 0.15 | 80.10 0.27 | 7843 0.50 | 82.84 0.01 | 74.84 0.35
Squirrel 38.66 1.24 | 39.14 145 | 3591 1.09 | 72.06 2.21 | 6824 0.97 | 51.73 1.30
johnshopkins55 | 67.37 0.54 | 67.43 0.20 | 79.63 0.16 | 77.37 0.61 | 78.13 0.42 | 7593 048
Actor 3482 0.55 | 3524 081 | 3393 0823442 1.08 | 3655 0.93 | 34.88 0.63
Minesweeper | 85.74 0.25 | 8546 0.49 | 80.02 0.03 | 80.33 0.23 | 85.56 0.28 | 85.25 0.71
Questions 97.13 0.01 | 97.18 0.04 | 97.06 0.03 | 97.02 0.00 | 97.27 0.04 | 97.23 0.04

Chameleon 51.18 2.70 | 52.32 247 | 50.18 2.01 | 75.81 1.67 | 73.46 2.29 | 66.67 1.65
Tolokers 79.15 032 | 78.89 0.37 | 80.07 0.53 | 8045 0.54 | 80.52 0.41 | 80.50 0.61

Amazon-ratings | 48.08 0.38 | 52.21 0.27 | 52.68 0.26 | 52.94 0.23 | 53.21 0.46 | 52.25 0.34

conjunction to the GNNs

For homophilic graphs, only nearest neighbor (NN) samples (Fig. 4a) can be good enough to get high prediction
accuracy. For certain very large dense homophilic graphs, only diverse samples from submodular (Sub) (Fig. 4b) can
be beneficial as it selects better representative samples. For heterophilic graphs, nodes can be either homophilic or
heterophilic and thus it’s better to consider both samples and left the decision to a MLP (Fig. 4c, 4d) to adaptively
learn.

Table 1 shows the F1 measure of the node classification task for
heterophilic graphs. Here, AGS-GNN 1s compared against
homophilic (GraphSAGE, GraphSaint) and heterophilic (LINKX,
ACM-GCN) works.
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