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What is Automata Processing? 

▶  Pattern Matching! 

§  Most commonly (but not limited to!) regular expression 

processing 

§  E.g.,  

•  (1*01*01*)* 

•  /<OBJECT\s+[^>]*classid\s*=\s*[\x22\x27]?\s*clsid\s*\x3a

\s*\x7B?\s*A105BD70-BF56-4D10-BC91-41C88321F47C/si 

▶  Many applications 

§  Deep packet inspection, virus scanning, file carving, etc. 

§  But also association rule mining, bioinformatics, etc. 

§  Sometimes more easily expressed as automata, not regex 
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Ex: Brill Part-of-Speech (POS) Tagging  
ICSC ‘15, IEEE BigData ‘15	


▶  A task in Natural Language Processing (NLP) 

▶  Grammatical tagging of words in text (corpus) 
§  E.g.  

Cats love dogs. ->                        -> Cats/noun love/verb dogs/
noun ./. 

▶  Complicated:  
§  E.g. I book tickets. -> book: Noun? Verb? 

▶  Baseline tagging:  
§  Tag each word to its most frequent tag based on training corpus 

 

POS Tagger 
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Brill Tagging	


▶  A two-stage tagging technique [3] 

▶  Stage 1: Baseline tagging 

▶  Stage 2: Update tags based on some rules (AP) 

-  Example rule: NN VB PREVTAG TO 

  

 If current tag is NN, previous tag is TO, update current tag to VB 

 

[3]	
  Brill,	
  Eric.	
  "Transforma5on-­‐based	
  error-­‐driven	
  learning	
  and	
  natural	
  language	
  processing:	
  A	
  case	
  study	
  in	
  
part-­‐of-­‐speech	
  tagging."	
  Computa5onal	
  Linguis5cs	
  21.4	
  (1995):	
  543-­‐565.	
  

Apply the 
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This is easily represented as regular expressions 

Ø  Can achieve high speedup, use many more  
 (machine-learned) rules, achieve high accuracy 
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The Automata Processor 
•  Hardware accelerator specifically for symbolic pattern matching 

•  Hardware implementation of non-deterministic finite automata  (NFA) (plus some 
extra features) 

•  A highly parallel, reconfigurable fabric comprised of ~50,000 pattern-matching 
elements per chip.  First-generation boards have 32 chips, giving ~1.5M 
processing elements 

•  Exploits the very high and natural level of parallelism found  
in memory arrays 

•  High speedup potential motivates revisiting many algorithms to leverage automata 
processing 

•  On-board FPGA will allow sophisticated processing pipelines 
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What is an NFA? 
▶  A finite automaton is a set of states and transition rules 

that respond to input 

▶  Recognizes regular languages, e.g. (1*01*01*)* 

▶  Non-determinism  (NFA) allows multiple  
concurrent paths through the automaton 

§  (Non-determinism != stochastic) 

§  This is very powerful, handles  
combinatorial problems, checks many  
possibilities concurrently 

§  Avoids exponential cost of DFA 
(deterministic finite automaton) 

▶  AP adds counters, Boolean elements 

Source: Wikipedia 
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NFA vs. DFA 

▶  Any nondeterministic machine can be modeled as deterministic – at the 
expense of exponential growth in states 

▶  Ex: 3rd-to-last character in an a-b string is a “b” 

▶  NFA allows multiple active states 
§  NFA hardware is highly parallel 

▶  NFA hardware’s advantage increases when large number of states active 

NFA: DFA: 
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Architectures for Automata Processing 
▶  Automata processing (regular expression processing) requires:  

§  Lots of irregular parallelism  

§  Massively high memory bandwidth 

§  Low-latency access  

▶  We explore automata-based computation on a variety of parallel 

architectures: 

§  Multi-core CPUs 

§  Many-core Intel’s XeonPhi accelerators  

§  SIMD-based graphics processing units (GPUs) 

§  Field programmable gate arrays (FPGAs) 

§  Automata Processor (AP) 

XeonPhi 

GPU FPGA AP 

Von 
Neumann 

Spatial 
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Outline 

▶  Issues in automata/regex processing 

§  Why von Neumann architectures struggle with large regex 

rulesets 

▶  Overview of AP architecture 

§  Why spatial architectures are a good fit 

▶  Ongoing research and results 

§  Why Automata Processing is about much more than regex 

processing 

§  10X-100sX speedup 
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Spatial architectures are a better fit for 
automata processing 

Von Neumann (CPU/GPU) 

Next 
State 
Rule 
Table 

Current 
States 

Spatial, data-flow (FPGA/AP) 

State  
0 

State 
2 

State 
4 

State 
1 

State 
3 

State 
5 

Next 
States 

Input Symbol Input Symbol 
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Spatial vs. Von Neumann Architectures 

▶  Von Neumann (CPUs, GPUs) 

§  Table lookup: for current state(s), identify correct transition(s) 
based on current input 

•  NFA: potentially many lookups per cycle 
-  Bad for most memory architectures 

•  DFA: one lookup per cycle 
-  But DFAs suffer exponential blowup, quickly blow out on-chip 

caches – especially with large # rules 

-  Compression approaches help 

•  Hybrid: recognizes that many RegEx’s have low active count, so 
NFAs ok; bail out to DFA if active count exceeds # memory ports 

•  Very difficult to build efficient DFAs with many rules 

▶  Spatial (AP, FPGAs): Direct HW implementation of NFA! 
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CPU-based Engine - VASim (CPU/XeonPhi) 
IISWC’16 

▶  VASim is a high-performance, open-
source Virtual Automata SIMulator for 
automata processing research 

▶  Optimized version of the classic NFA 
algorithm:  
Ø  Looking up appropriate transition rules in 

memory for each symbol in the input stream 
based on active state(s) in the finite automaton 
and executing those transitions in the 
automaton 

Ø  Considering only automata states that are active 
Ø  Optimized data structures for low-overhead 

parallel execution 

Ø  Parametrically multithreaded in two dimensions: 
separate automata and different sections of the 
input symbol stream 

Ø  VASim is within ~2x of HyperScan  
Ø  We think we can beat HyperScan – we still have 

lots of optimizations yet to include 

a b c 

1 {2} 

2 {3,4} {5} 

3 {4} {4} 

4 {5} 

5 {2} 

Alphabet	
  size	
  

N
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  o

f	
  s
ta
te
s	
  

1	
  

2	
  

4	
  

a	
  

c	
  

a	
  

b	
  

a,	
  c	
  3	
  

5	
  c	
  

b	
  



Automata are traditionally used to 
compute large regular expression rulesets 

▶  Snort network intrusion 
detection ruleset 

▶  BRO network intrusion 
detection ruleset 

▶  ClamAV virus signature 
ruleset 

▶  Many other applications 

§  Eg, scanning text 

Line-rate, streaming deep 
packet inspection requires 
fast automata processing of 
tens of thousands of rules 
 
…but DFAs struggle with 
large # rules 



eGY6gO.*R(CwU4|C15B|awHp)X 

Example synthetic regular expression pattern from PowerEN (IBM) 

Regular-expression-derived automata 
tend to have similar properties 

Ø  Long literals 
Ø  Low activity factors 



Other automata-based applications (not regex-
based) can have more diverse behavior 

Example: Sequential Pattern Mining Automata 

Ø Higher activity factors 
Ø More complex topography, transition rule complexity 
Ø More dynamic variation in behavior 
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Need Diverse Benchmarks for Automata 
Processing 

▶  ANMLZoo is a collection of 14 diverse automata 
benchmarks and standard inputs that can be used to 
evaluate automata processing engines and architectures 
(IISWC’16) 

Regular 
Expression 
Rulesets: 
•  Snort 
•  ClamAV 
•  Dotstar (Becchi et 

al.[1]) 
•  PowerEN[2] 
•  Protomata 
•  Brill Tagging  

Mesh 
Automata: 
•  *Hamming 
•  *Levenshtein 

“Widgets”: 
•  Sequential 

Pattern Mining 
•  Fermilab Particle 

Tracking 
•  Entity Resolution 
•  Random Forest Synthetic: 

•  *Block Rings 
•  *Core Rings 

*Parametric code generation  
  tools are included 



VASim is also a collection of software 
engines for varying architectures 

CPU 

VA 
Sim 

Xeon
Phi GPU FPGA AP 

NFA 
or 

Regex 

iNFAnt2 Vivado 



VASim+ANMLZoo are being open sourced 

VAsim: 
•  https://www.github.com/jackwadden/VASim 
•  Our optimized GPU engine ready but pending license 

issues 
•  FPGA back end will be released soon 

Benchmarks: 
•  ANMLZoo is a mixed license benchmark suite, with 

some applications awaiting permission (12/14 
released so far, others pending license issues) 

•  https://github.com/jackwadden/ANMLZoo 
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Outline 

▶  Issues in automata/regex processing 

§  Why von Neumann architectures struggle with large regex 

rulesets 

▶  Overview of AP architecture 

§  Why spatial architectures are a good fit 

▶  Ongoing research and results 

§  Why Automata Processing is about much more than regex 

processing 

§  10X-100sX speedup 
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Automata Processor Development Board 
PCIe, 4 Ranks, 32 chips, 1.5M STEs 

•  The FPGA provides substantial flexibility to augment  
  the NFAs with other types of computation 
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Automata Processor – Basic Operation 

Row Access results in one word being retrieved from memory. 
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Conventional Memory 
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(I
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l)
 

 Row Access results in 49,152 match & route operations 
(then Boolean AND with “active” bit-vector) 

Routing 
Matrix 

Automata Processor 

Figures courtesy of Micron 
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Automata Processor – Basic Operation 
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Routing 
Matrix 

Automata Processor 

Figures courtesy of Micron 

Active state 
vector, AND 

array 

▶  One	
  column	
  =	
  one	
  State	
  Transi5on	
  Element	
  

▶  STE	
  “fires”	
  when	
  
§  Symbol	
  match	
  

§  AND	
  the	
  STE	
  is	
  ac5ve	
  

▶  Row	
  Access	
  results	
  in	
  49,152	
  match	
  &	
  route	
  ops	
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Automata Processor Hardware Building Blocks 

▶  Important: ALL elements on all chips see input symbol every cycle 

State Transition Element  (STE)     49,152 
(note shift in notation) 

 
 
Counter Element      768 
 
 
Boolean Logic Element      2,304 
Nine Programmable Functions 
 
 
 
 
 
 
Report buffer       6,144  
 

per chip 

Figures courtesy of Micron 
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Parallel Automata/Rules 

Pattern #1 à 

Pattern #2 à 

Pattern #3 à 

•  Parallelization of automata requires no special consideration by the 
user.  Each automaton operates independently upon the input data 
stream 

•  NFAs are extremely compact, allowing many parallel rules 
Figures courtesy of Micron 
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Non von Neumann Parallel Architecture 
▶  Spatial architecture avoids the von Neumann  

bottleneck of instruction fetch and data fetch 

§  Instead: hardware reconfiguration and  
higher density of NFAs vs. DFAs 

▶  Spatial architecture allows massive parallelism 

§  Every automaton node can inspect every input symbol 

•  Leverages full-row memory access—fundamental insight 

§  Can process a new input symbol every clock cycle 

§  Approaches efficiency of an Alternating Finite Automaton 
 

▶  Fills the unusual “MISD” role in  
Flynn’s taxonomy 

ALU CONTROL 

IN OUT 

Memory 

SISD SIMD 

MISD MIMD 
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Programming Options 
▶  Currently, like other PCIe-attached accelerators 

§  Offload model, mediated by device driver 

▶  Input 

§  RegEx 

§  GUI – Workbench 

§  C/Python APIs 

§  RAPID – C-like language 

§  ANML 

▶  Compiling 

§  Input à ANML 

§  ANMLà Netlist 

§  Netlist à Place & route 
Figures courtesy of Micron 
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I/O 
▶  Bandwidth in 1st-gen boards 

§  Input side: 1 Gbit per second throughput from input side 

•  But >1 Gbit/s possible: board can be partitioned to support multiple, 
concurrent dataflows, each to a different subset of AP chips 

•  Then the limit is the PCIe bandwidth 

§  Output side: depends on number of report events generated by the 
design and the input stream 

§  1 Gb/s per node for highly complex analysis = substantial speedup! 

▶  Note: input limitation is due to DRAM process in 1st-gen 

§  Also lower density due to 50nm node 

§  These should change in 2nd-gen 

§  Logic – enables much higher clock rates and higher density 

§  New system architectures allow higher input/output rates 
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Streaming Analytics 

▶  PCIe offload model puts driver in the critical path 

▶  However, other system architectures are possible 

§  E.g., direct data ingress 

§  Load “program” (configuration), stream data directly, allow 

concurrent output 

§  Many other possibilities… 
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Problems Aligned with the Automata Processor 
Applications requiring deep analysis of data streams containing spatial and 

temporal information are often impacted by the memory wall and will 
benefit from the processing efficiency and parallelism  

of the Automata Processor 

Network Security: 
• Millions of patterns 
• Real-time results 
• Unstructured data 

Bioinformatics: 
•  Large operands 
• Complex patterns 
• Many combinatorial problems 
• Unstructured data 

Video Analytics: 
• Highly parallel operation 
• Real-time operation 
• Unstructured data 

Data Analytics: 
• Highly parallel operation 
• Real-time operation 
• Complex patterns 
• Many combinatorial problems 
• Unstructured data 

So far: 10-100sX speedups possible! 
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Problems Aligned with the Automata Processor 

▶  AP strengths 

§  Complex/fuzzy pattern matching, e.g. regex, edit distance 

§  Combinatorial search space (but only with pruning) 

§  Highly parallel set of symbolic analysis steps for each input item 

§  Unstructured data, unstructured communication 

•  Esp. with high fan-out/fan-in 

§  These challenges are common in “big data” analytics! 

§  Also Markov chains, some neural models 

▶  AP limitations 

§  No arithmetic, only counting (but on-board FPGA can help) 

§  Changing the “program” requires a reconfiguration step 
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Outline 

▶  Issues in automata/regex processing 

▶  Overview of AP architecture 

▶  Ongoing research and results 
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A few examples of ongoing CAP research 

▶  Regular expressions (e.g., Brill tagging) 

▶  Entity resolution 

▶  Association rule mining 

▶  Bioinformatics – CRISPR 

▶  Random Forest 

▶  Markov processes 

▶  Hierarchical temporal memory 

▶  Automata benchmarking 
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Results – Brill POS Tagging 
(ICSC’15, BigData’15)	


▶  Performance of the AP as a function of the number of rules  	


•  Our largest dataset: 218 rules 
•  Maximum number of rules in the literature: 1729 [5] 

–  Estimated Speed-up: 276X 
[5] Brill, Eric. "Unsupervised learning of disambiguation rules for part of speech tagging." Proceedings of the third 
workshop on very large corpora. Vol. 30. Association for Computational Linguistics, 1995 
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Entity Resolution (ER) 
IEEE BigData ‘16	


▶  Identify matching records despite mismatches in key(s) 

▶  E.g., names – typos, transliteration, different formats 

§  Qaddaffi, Gaddaffi, etc. 

§  FDR; Franklin Delano Roosevelt; Roosevelt, Franklin D., Pres. 
Roosevelt, etc. 

▶  Handle with variations of Hamming distance macro 

 

Name “Adams”	
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Running Time 
▶  Running time of the AP 

approach increases almost 

linearly as databases 

increase 

▶  The AP approach works the 

best for both SNAC and 

DBLP databases 

▶  At least 17x speedup is 

achieved 

▶  These speedups increase 

with higher edit distance 
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Results Quality	


▶  Compression rate: record number after matching / original record 

number 

▶  Correct Pair number: every two records inside the group is counted 

as one pair 

▶  Generalized merge distance: numbers of merge and split operations 

to convert results to “correct” results 

	

Method	
 Comp 

 Rate	

Correct 
Pairs #	


Percent
age	


GMD	


Lucene	
 65.3%	
 262	
 80.6%	
 54	


Sorting	
 71.4%	
 233	
 71.7%	
 63	


Hashing	
 73.2%	
 213	
 65.6%	
 72	


Suffix-tree	
 73.2%	
 213	
 65.6%	
 72	


AP	
 57.2%	
 292	
 89.8%	
 31	


Manual	
 47.4%	
 325	
 100%	
 0	


Method	
 Correct 
Pairs #	


Percen
tage	


GMD	


Sorting	
 502	
 74.4%	
 183	


Hashing	
 484	
 71.7%	
 212	


Suffix-tree	
 484	
 71.7%	
 212	


AP	
 615	
 91.4%	
 62	


Manual	
 675	
 100%	
 0	


Accuracy for SNAC Accuracy for DBLP 
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10	
   20	
   30	
   40	
   50	
   60	
   70	
   80	
   90	
   100	
  

0	
  150000	
   75000	
   50000	
   37500	
   30000	
   25000	
   21428	
   18750	
   16666	
   15000	
  

1	
   53571	
   25862	
   17045	
   12711	
   10135	
   8426	
   7211	
   6302	
   5597	
   5033	
  

2	
   35714	
   16304	
   10563	
   7812	
   6198	
   5136	
   4835	
   3826	
   3393	
   3048	
  

3	
   28846	
   12295	
   7815	
   5725	
   4518	
   3731	
   3177	
   2767	
   2450	
   2199	
  

4	
   25862	
   10135	
   6302	
   4573	
   3588	
   2952	
   2508	
   2180	
   1928	
   1728	
  

5	
   25000	
   8823	
   5357	
   3846	
   3000	
   2459	
   2083	
   1807	
   1595	
   1428	
  

Large Parallelism – String capacity 

▶  The AP can process a large number of strings simultaneously 

Mismatches or 
Gaps allowed 

Pattern 
length 

Number of strings that can be processed on one 1st generation AP board 
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Association Rule Mining, Frequent Itemsets 
IPDPS ‘15 

▶  Widely used building block in data mining to identify 
associations, e.g. frequent itemsets 
§  Example: {pen, ink, paper} 

▶  Support: # occurrences to qualify 
▶  Applications: market basket analysis, social network analysis, 

categorization, text mining, anomaly detection, cybersecurity, 
etc. 
§  Ex: Traffic accident analysis: which events are strongly correlated 

with accidents? 

§  Ex: Words, phrases, or other patterns  associated with specific 
concepts 

§  Ex: Intrusion detection 

▶  AP can be used for learning as well as inference 
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Apriori Algorithm 

▶  Classic “a priori” algorithm a good fit for AP 

§  Relies on downward closure: k-itemset with support N must 

include a k-1 itemset with support N 

§  Identify large itemsets and prune search space by 

identifying 2-itemsets, then 3-itemsets, etc. 

§  AP’s large capacity can test many candidate itemsets in 

parallel 

§  Current gen is counter limited 

▶  Compare to Eclat algorithm on CPU 

§  Better on CPU than simple a priori 
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Sequential Pattern Mining (SPM) 
ACM CF’16 

Trans.  Items 

1 <{Bread, Milk}, {Coke}> 

2 <{Bread, Milk, Chips}{Beer, Eggs}{Chips}> 

3 <{Milk} {Chips} {Beer, Coke}> 

4 <{Bread, Milk, Chips}{Beer, Chips}{Beer, Coke, Eggs}> 

5 <{Bread, Milk}{Coke}{Chips}{Eggs}> 

Bread Milk 

Eggs 

•  Now order among transactions matters (instead of looking at each 
transaction in isolation) 
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Mapping FIS to the AP 

Transactions

Itemset

AR
M

Frequency 
counting

Input Stream 

NFA by STEs

AP implementation

Counter 
Element

Item Symbol 
8-bit or 16-bit

Item Code
Bread 0
Milk 1

Chips 2
Beer 3
Coke 4
Eggs 5

Separator 255(\xFF)

Transaction stream:
01\xFF0235\xFF12345\xFF01234\xFF0124 

Level%0% Level%1% Level%2% Level%3% Level%4%

Coun/ng%%
component%%

{Milk, Beer, Eggs} 
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Automata Design for SPM: Flattened 
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Performance Evaluation 
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Performance summary 

▶  FIS: Up to 129X speedup over single-core CPU 

implementation of Apriori and up to 49X speedup over 

multicore-based and GPU-based implementations of Eclat  

ARM  

▶  SPM: Up to 430X, 90X, and 29X speedups are achieved 

by the AP-accelerated GSP, when compared with the 

single-threaded CPU, multicore CPU, and GPU GSP 

implementations, respectively 
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Bioinformatics: CRISPR Sites Discovery 

▶  CRISPR: Clustered Regularly Interspaced Short 

Palindromic Repeats  

▶  Each repeat is followed by a spacer DNA and the spacer 

could be either the same or different 

▶  Mismatches/gaps may be allowed in repeats 

▶  Potential applications: genome engineering, RNA editing, 

Biomedicine, etc. 



47 

AP Design 

Fuzzy 
macro 

spacer
1 

spacer
2 

spacer
3 

spacer
4 

Mismatch fuzzy macro spacers 
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Preliminary Results 

▶  Find 100 and 500 CRISPRs 

▶  Allow different number of mismatches (1~5) 

▶  Promising speedup achieved, from 40.7x to 402x 

▶  Speedup is better for larger database 
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Random Forest on the AP 
ISC’16   

▶  Ensemble learning method for classification, etc  

▶  Construct a multitude of decision trees, test all 

▶  Randomly restricted to be sensitive to only selected 

feature dimensions 

▶  Reduces overfitting, better scalability 

▶  Use AP for inference stage 
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Tree-Traversal to Pattern Matching? 

▶  Restructure each Decision Tree into chains 

§  Each chain represents a path through each tree in the 

forest.  

§  Do this for ALL  trees in the forest. 

F11 

F2 

F3 F4 

0 

1 2 

3 

5 

0	
   1,2,3,4,5	
  

1,2	
  

1	
   2	
  

3,4,5	
  

3,4	
   5	
  

F12 

4 

3	
   4	
  

F11 

0 

~F11 

F2 

~F3 

2 

~F11 

~F2 

F4 

3 

~F11 

~F2 

~F4 

5 

F12 

~F11 

F2 

F3 

1 

~F11 

~F2 

F4 

4 

~F12 

Decision Tree Tree Paths 
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Experimental Results 

▶  Twitter: The AP achieved a max 93x speedup over CPU 

▶  MNIST: The AP achieved a max 63x speedup over CPU 

▶  AP exhibits tradeoff in capacity: larger trees/strings = 

fewer trees/strings per pass 

51 
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Randomized Input 
(ICCD’16) 

           IDEA: randomize the input symbol stream 

▶  Not using finite automata anymore 

▶  What power does this give us? 
§  AP allows conditional transitions based on input symbols 

§  With randomized input, transition conditions are random! 

•  Each character class now has a probability of being 
recognized based on the distribution of random 
input symbols 

§  This means we can naturally build probabilistic automata (PA) on 
the AP 

•  Generalization of a Markov Chain 
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Markov Chain Examples 

Sunny Rainy 

Sunny 0.9 0.1 

Rainy 0.5 0.5 

Stochastic Transition Matrix (rows sum to 1)

BULL BEAR STAG
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Markov Chain Example | “Fair Coin” 
 

Heads Tails
Heads 0.5 0.5
Tails 0.5 0.5

For this example, we assume randomized input symbol 
[0-9]

Heads Tails
Heads [01234] [56789]
Tails [02468] [13579]

Stochastic transition matrix

Stochastic symbol “buckets”
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Hypothesis: Many parallel chains can create a 
massive amount of parallel probabilistic behavior 

One 8-bit 
symbol 
stream 
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Applications? PRNG or Agent-based 
Simulation 

PRNG 
output 

PRNG Consumer  
(e.g., Monte Carlo 

Simulation) 

PRNG input 
stimulus 

SIR Epidemiological Model 
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Statistical tests are used to measure quality 
of random output 

▶  TestU01 Statistical Test Suite 

If you pass BigCrush, you are 
indistinguishable from random 

Candidate input 
integers 

BigCrush 
“You failed 3 tests!” 

“We can’t find a 
statistically significant 
pattern in your input” 
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Results 

▶  8-state chains sufficient 

▶  Chain transitions need to be randomly generated 

§  Need to reconfigure periodically 

▶  Very high throughput possible 

▶  Predict 6.8X better energy efficiency than GPU 



Hierarchical Temporal Memory 
▶  Recurrent Neural Network 

(RNN) based on binary 
synapses 

▶  Performs, learning, 
inference, and prediction 
on a continuous stream of 
inputs 

▶  Has been used for 
prediction, anomaly 
detection, classification 
tasks 

▶  Key idea: Use AP as an 
accelerator for HTM Proximal Dendrite

(synapses from column)

Cell activation logic

Distal Dendrite segments
(synapses from other cells) HTM Cell

Active Predicted

HTM Region

HTM Hierarchy

AP as HTM accelerator 



HTM-AP Correspondences 

HTM 
▶  Lateral connections make 

cell eligible to  
activate 

▶  External inputs activate 
cell, propagating  
activation 

▶  Predictions are determined 
based on past activations 

AP 
▶  Lateral connections from 

matching STEs make STE 
eligible to match 

▶  STE matches if symbol on 
global input matches 
stored  

▶  Next-state activations are 
computed based on 
current state and input 
symbol 

Key idea: Exploit many natural correspondences to  
gain parallelism with AP 



Benchmark Simulation Results 
Benchmar
k 

Base 
error (%) 

AP error 
(%) 

Base 
runtime 
(s) 

AP 
runtime 
(s) 

Speedup 

Sine 13.6 14 2.05 4.59e-3 446 

Hotgym 27 26.4 0.736 4.62e-3 159 

NYCTaxi 11.6 8.8 8.76 63.9.e-3 137 

Columns Cells STEs Counters Booleans 

Sine 1,170 18,395 1,478,742 30,367 2,340 

Hotgym 329 6,320 593,670 11,609 658 

NYCTaxi 1,804 44,161 8,540,630 160,997 3,608 

Key result: HTM model in AP offers 137-446X speedup  
while preserving accuracy 



ANMLZoo is a collection of 14 diverse automata 
benchmarks and standard inputs that can be 

used to evaluate automata processing engines 
and architectures (IISWC’16) 

Regular 
Expression 
Rulesets: 
•  Snort 
•  ClamAV 
•  Dotstar (Becchi et 

al.[1]) 
•  PowerEN[2] 
•  Protomata 
•  Brill Tagging  

Mesh 
Automata: 
•  *Hamming 
•  *Levenshtein 

“Widgets”: 
•  Sequential 

Pattern 
Mining[3] 

•  Fermilab Particle 
Tracking 

•  Entity Resolution 
•  Random Forests 

Synthetic: 
•  *Block Rings 
•  *Core Rings 

*Parametric code generation  
  tools are included 



ANMLZoo Cross-Architecture Evaluation 
•  XeonPhi performance is lower than CPU performance because of 

reduced frequency and per-thread cache 
•  GPUs can outperform CPUs because of their superior latency hiding, 

not because of SIMD computation 
•  Reconfigurable fabrics can perform much better than von Neumann 

architectures if the automata can be placed-and-routed into the 
reconfigurable fabric 



ANMLZoo Cross-Architecture Evaluation, cont. 

•  Note substantial speedup even for “conventional” regex rulesets 
•  But much higher speedup for applications with more complex 

automata structures 
•  Esp. high activity factors 

•  Very promising early results for FPGAs as well 
•  AP still better, but benefits of spatial architecture are clear 
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Automata Processing and Spatial 
Architectures are very powerful for many 

applications – not just regex! 

▶  Brill tagging 

▶  Entity resolution 

▶  Association rule mining 

▶  Bioinformatics – CRISPR 

▶  Random Forest 

▶  Markov processes 

▶  Hierarchical temporal memory 

▶  Automata benchmarking 
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AP Architecture 
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 Row Access results in 49,152 match & route operations/chip 
(then Boolean AND with “active” bit-vector) 

Routing 
Matrix 

Automata Processor 

•  Implements NFAs  
  natively in hardware 
•  Non-determinism very  
  powerful for fuzzy matching 
•  Massive parallelism 

Figures courtesy of Micron 
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Many Exciting Research Questions 
▶  Leveraging on-board FPGA 

▶  Line-speed processing 

▶  Cluster, datacenter-scale processing 

▶  Processing pipelines 
§  Including spanning multiple heterogeneous processing units 

▶  New form factors 
§  Make AP fully autonomous: CPU, memory, etc. 

§  3D stacking 

§  New interfaces directly to high-bandwidth data streams 

▶  New architectures, more flexible than just automata 
§  E.g., numerical range checking 

§  Extensions for graph processing, more neural models 

▶  New algorithms, libraries, etc. 

▶  And many more… 
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Questions? 

www.cap.virginia.edu 
 

www.micronautomata.com   
 

skadron@virginia.edu 


