
Automata Processing:
Massively-Parallel Acceleration for
Approximate Pattern Matching and

String Processing

 Kevin Skadron
Department of Computer Science

Mircea Stan

Charles R. Brown Department of Electrical & Computer Engineering

2

Credits
▶  People:

§  Research Scientists: Tho Nguyen and Ke Wang

§  Visiting Faculty: Xiaoping Huang

§  Postdoctoral research associates: Mohamed Aly, Vinh Dang

§  Graduate Students: Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Deyuan
Guo, Mateja Putic, Elaheh Sadredini, Tom Tracy, Jack Wadden, Ted Xie

§  Undergraduate Student: Sanil Rao

§  Micron collaborators: Paul Dlugosch, Terry Leslie, Dan Skinner, Matt Tanner,
Matt Grimm, Paul Glendenning, and many others

§  ARI liaison: Rob Jones

▶  Funding – this work was supported in part by:
§  Micron

§  C-FAR, one of six centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA

§  Virginia CIT

§  NSF

§  ARCS Fellowship (Wadden)

3

What is Automata Processing?

▶  Pattern Matching!

§  Most commonly (but not limited to!) regular expression

processing

§  E.g.,

•  (1*01*01*)*

•  /<OBJECT\s+[^>]*classid\s*=\s*[\x22\x27]?\s*clsid\s*\x3a

\s*\x7B?\s*A105BD70-BF56-4D10-BC91-41C88321F47C/si

▶  Many applications

§  Deep packet inspection, virus scanning, file carving, etc.

§  But also association rule mining, bioinformatics, etc.

§  Sometimes more easily expressed as automata, not regex

4

Ex: Brill Part-of-Speech (POS) Tagging
ICSC ‘15, IEEE BigData ‘15	

▶  A task in Natural Language Processing (NLP)

▶  Grammatical tagging of words in text (corpus)
§  E.g.

Cats love dogs. -> -> Cats/noun love/verb dogs/
noun ./.

▶  Complicated:
§  E.g. I book tickets. -> book: Noun? Verb?

▶  Baseline tagging:
§  Tag each word to its most frequent tag based on training corpus

POS Tagger

5

Brill Tagging	

▶  A two-stage tagging technique [3]

▶  Stage 1: Baseline tagging

▶  Stage 2: Update tags based on some rules (AP)

-  Example rule: NN VB PREVTAG TO

 If current tag is NN, previous tag is TO, update current tag to VB

[3]	
 Brill,	
 Eric.	
 "Transforma5on-­‐based	
 error-­‐driven	
 learning	
 and	
 natural	
 language	
 processing:	
 A	
 case	
 study	
 in	

part-­‐of-­‐speech	
 tagging."	
 Computa5onal	
 Linguis5cs	
 21.4	
 (1995):	
 543-­‐565.	

Apply the
Rule

…	
 to/TO	
 conflict/NN	
 with/IN	
 …	
 -­‐>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 -­‐>	
 …	
 to/TO	
 conflict/VB	
 with/IN	
 …	

This is easily represented as regular expressions

Ø  Can achieve high speedup, use many more
 (machine-learned) rules, achieve high accuracy

6

The Automata Processor
•  Hardware accelerator specifically for symbolic pattern matching

•  Hardware implementation of non-deterministic finite automata (NFA) (plus some
extra features)

•  A highly parallel, reconfigurable fabric comprised of ~50,000 pattern-matching
elements per chip. First-generation boards have 32 chips, giving ~1.5M
processing elements

•  Exploits the very high and natural level of parallelism found
in memory arrays

•  High speedup potential motivates revisiting many algorithms to leverage automata
processing

•  On-board FPGA will allow sophisticated processing pipelines

7

What is an NFA?
▶  A finite automaton is a set of states and transition rules

that respond to input

▶  Recognizes regular languages, e.g. (1*01*01*)*

▶  Non-determinism (NFA) allows multiple
concurrent paths through the automaton

§  (Non-determinism != stochastic)

§  This is very powerful, handles
combinatorial problems, checks many
possibilities concurrently

§  Avoids exponential cost of DFA
(deterministic finite automaton)

▶  AP adds counters, Boolean elements

Source: Wikipedia

8

NFA vs. DFA

▶  Any nondeterministic machine can be modeled as deterministic – at the
expense of exponential growth in states

▶  Ex: 3rd-to-last character in an a-b string is a “b”

▶  NFA allows multiple active states
§  NFA hardware is highly parallel

▶  NFA hardware’s advantage increases when large number of states active

NFA: DFA:

9

Architectures for Automata Processing
▶  Automata processing (regular expression processing) requires:

§  Lots of irregular parallelism

§  Massively high memory bandwidth

§  Low-latency access

▶  We explore automata-based computation on a variety of parallel

architectures:

§  Multi-core CPUs

§  Many-core Intel’s XeonPhi accelerators

§  SIMD-based graphics processing units (GPUs)

§  Field programmable gate arrays (FPGAs)

§  Automata Processor (AP)

XeonPhi

GPU FPGA AP

Von
Neumann

Spatial

10

Outline

▶  Issues in automata/regex processing

§  Why von Neumann architectures struggle with large regex

rulesets

▶  Overview of AP architecture

§  Why spatial architectures are a good fit

▶  Ongoing research and results

§  Why Automata Processing is about much more than regex

processing

§  10X-100sX speedup

11

Spatial architectures are a better fit for
automata processing

Von Neumann (CPU/GPU)

Next
State
Rule
Table

Current
States

Spatial, data-flow (FPGA/AP)

State
0

State
2

State
4

State
1

State
3

State
5

Next
States

Input Symbol Input Symbol

12

Spatial vs. Von Neumann Architectures

▶  Von Neumann (CPUs, GPUs)

§  Table lookup: for current state(s), identify correct transition(s)
based on current input

•  NFA: potentially many lookups per cycle
-  Bad for most memory architectures

•  DFA: one lookup per cycle
-  But DFAs suffer exponential blowup, quickly blow out on-chip

caches – especially with large # rules

-  Compression approaches help

•  Hybrid: recognizes that many RegEx’s have low active count, so
NFAs ok; bail out to DFA if active count exceeds # memory ports

•  Very difficult to build efficient DFAs with many rules

▶  Spatial (AP, FPGAs): Direct HW implementation of NFA!

13

CPU-based Engine - VASim (CPU/XeonPhi)
IISWC’16

▶  VASim is a high-performance, open-
source Virtual Automata SIMulator for
automata processing research

▶  Optimized version of the classic NFA
algorithm:
Ø  Looking up appropriate transition rules in

memory for each symbol in the input stream
based on active state(s) in the finite automaton
and executing those transitions in the
automaton

Ø  Considering only automata states that are active
Ø  Optimized data structures for low-overhead

parallel execution

Ø  Parametrically multithreaded in two dimensions:
separate automata and different sections of the
input symbol stream

Ø  VASim is within ~2x of HyperScan
Ø  We think we can beat HyperScan – we still have

lots of optimizations yet to include

a b c

1 {2}

2 {3,4} {5}

3 {4} {4}

4 {5}

5 {2}

Alphabet	
 size	

N
um

be
r	
 o

f	
 s
ta
te
s	

1	

2	

4	

a	

c	

a	

b	

a,	
 c	
 3	

5	
 c	

b	

Automata are traditionally used to
compute large regular expression rulesets

▶  Snort network intrusion
detection ruleset

▶  BRO network intrusion
detection ruleset

▶  ClamAV virus signature
ruleset

▶  Many other applications

§  Eg, scanning text

Line-rate, streaming deep
packet inspection requires
fast automata processing of
tens of thousands of rules

…but DFAs struggle with
large # rules

eGY6gO.*R(CwU4|C15B|awHp)X

Example synthetic regular expression pattern from PowerEN (IBM)

Regular-expression-derived automata
tend to have similar properties

Ø  Long literals
Ø  Low activity factors

Other automata-based applications (not regex-
based) can have more diverse behavior

Example: Sequential Pattern Mining Automata

Ø Higher activity factors
Ø More complex topography, transition rule complexity
Ø More dynamic variation in behavior

17

Need Diverse Benchmarks for Automata
Processing

▶  ANMLZoo is a collection of 14 diverse automata
benchmarks and standard inputs that can be used to
evaluate automata processing engines and architectures
(IISWC’16)

Regular
Expression
Rulesets:
•  Snort
•  ClamAV
•  Dotstar (Becchi et

al.[1])
•  PowerEN[2]
•  Protomata
•  Brill Tagging

Mesh
Automata:
•  *Hamming
•  *Levenshtein

“Widgets”:
•  Sequential

Pattern Mining
•  Fermilab Particle

Tracking
•  Entity Resolution
•  Random Forest Synthetic:

•  *Block Rings
•  *Core Rings

*Parametric code generation
 tools are included

VASim is also a collection of software
engines for varying architectures

CPU

VA
Sim

Xeon
Phi GPU FPGA AP

NFA
or

Regex

iNFAnt2 Vivado

VASim+ANMLZoo are being open sourced

VAsim:
•  https://www.github.com/jackwadden/VASim
•  Our optimized GPU engine ready but pending license

issues
•  FPGA back end will be released soon

Benchmarks:
•  ANMLZoo is a mixed license benchmark suite, with

some applications awaiting permission (12/14
released so far, others pending license issues)

•  https://github.com/jackwadden/ANMLZoo

20

Outline

▶  Issues in automata/regex processing

§  Why von Neumann architectures struggle with large regex

rulesets

▶  Overview of AP architecture

§  Why spatial architectures are a good fit

▶  Ongoing research and results

§  Why Automata Processing is about much more than regex

processing

§  10X-100sX speedup

21

Automata Processor Development Board
PCIe, 4 Ranks, 32 chips, 1.5M STEs

•  The FPGA provides substantial flexibility to augment
 the NFAs with other types of computation

22

Automata Processor – Basic Operation

Row Access results in one word being retrieved from memory.

Ro
w

 A
dd

re
ss

(M

em
or

y
Lo

ca
tio

n)

Conventional Memory

Ro
w

 A
dd

re
ss

(I

np
ut

 S
ym

bo
l)

 Row Access results in 49,152 match & route operations
(then Boolean AND with “active” bit-vector)

Routing
Matrix

Automata Processor

Figures courtesy of Micron

23

Automata Processor – Basic Operation
Ro

w
 A

dd
re

ss

(I
np

ut
 S

ym
bo

l)

Routing
Matrix

Automata Processor

Figures courtesy of Micron

Active state
vector, AND

array

▶  One	
 column	
 =	
 one	
 State	
 Transi5on	
 Element	

▶  STE	
 “fires”	
 when	

§  Symbol	
 match	

§  AND	
 the	
 STE	
 is	
 ac5ve	

▶  Row	
 Access	
 results	
 in	
 49,152	
 match	
 &	
 route	
 ops	

24

Automata Processor Hardware Building Blocks

▶  Important: ALL elements on all chips see input symbol every cycle

State Transition Element (STE) 49,152
(note shift in notation)

Counter Element 768

Boolean Logic Element 2,304
Nine Programmable Functions

Report buffer 6,144

per chip

Figures courtesy of Micron

25

Parallel Automata/Rules

Pattern #1 à

Pattern #2 à

Pattern #3 à

•  Parallelization of automata requires no special consideration by the
user. Each automaton operates independently upon the input data
stream

•  NFAs are extremely compact, allowing many parallel rules
Figures courtesy of Micron

26

Non von Neumann Parallel Architecture
▶  Spatial architecture avoids the von Neumann

bottleneck of instruction fetch and data fetch

§  Instead: hardware reconfiguration and
higher density of NFAs vs. DFAs

▶  Spatial architecture allows massive parallelism

§  Every automaton node can inspect every input symbol

•  Leverages full-row memory access—fundamental insight

§  Can process a new input symbol every clock cycle

§  Approaches efficiency of an Alternating Finite Automaton

▶  Fills the unusual “MISD” role in
Flynn’s taxonomy

ALU CONTROL

IN OUT

Memory

SISD SIMD

MISD MIMD

27

Programming Options
▶  Currently, like other PCIe-attached accelerators

§  Offload model, mediated by device driver

▶  Input

§  RegEx

§  GUI – Workbench

§  C/Python APIs

§  RAPID – C-like language

§  ANML

▶  Compiling

§  Input à ANML

§  ANMLà Netlist

§  Netlist à Place & route
Figures courtesy of Micron

28

I/O
▶  Bandwidth in 1st-gen boards

§  Input side: 1 Gbit per second throughput from input side

•  But >1 Gbit/s possible: board can be partitioned to support multiple,
concurrent dataflows, each to a different subset of AP chips

•  Then the limit is the PCIe bandwidth

§  Output side: depends on number of report events generated by the
design and the input stream

§  1 Gb/s per node for highly complex analysis = substantial speedup!

▶  Note: input limitation is due to DRAM process in 1st-gen

§  Also lower density due to 50nm node

§  These should change in 2nd-gen

§  Logic – enables much higher clock rates and higher density

§  New system architectures allow higher input/output rates

29

Streaming Analytics

▶  PCIe offload model puts driver in the critical path

▶  However, other system architectures are possible

§  E.g., direct data ingress

§  Load “program” (configuration), stream data directly, allow

concurrent output

§  Many other possibilities…

30

Problems Aligned with the Automata Processor
Applications requiring deep analysis of data streams containing spatial and

temporal information are often impacted by the memory wall and will
benefit from the processing efficiency and parallelism

of the Automata Processor

Network Security:
• Millions of patterns
• Real-time results
• Unstructured data

Bioinformatics:
•  Large operands
• Complex patterns
• Many combinatorial problems
• Unstructured data

Video Analytics:
• Highly parallel operation
• Real-time operation
• Unstructured data

Data Analytics:
• Highly parallel operation
• Real-time operation
• Complex patterns
• Many combinatorial problems
• Unstructured data

So far: 10-100sX speedups possible!

31

Problems Aligned with the Automata Processor

▶  AP strengths

§  Complex/fuzzy pattern matching, e.g. regex, edit distance

§  Combinatorial search space (but only with pruning)

§  Highly parallel set of symbolic analysis steps for each input item

§  Unstructured data, unstructured communication

•  Esp. with high fan-out/fan-in

§  These challenges are common in “big data” analytics!

§  Also Markov chains, some neural models

▶  AP limitations

§  No arithmetic, only counting (but on-board FPGA can help)

§  Changing the “program” requires a reconfiguration step

32

Outline

▶  Issues in automata/regex processing

▶  Overview of AP architecture

▶  Ongoing research and results

33

A few examples of ongoing CAP research

▶  Regular expressions (e.g., Brill tagging)

▶  Entity resolution

▶  Association rule mining

▶  Bioinformatics – CRISPR

▶  Random Forest

▶  Markov processes

▶  Hierarchical temporal memory

▶  Automata benchmarking

34

Results – Brill POS Tagging
(ICSC’15, BigData’15)	

▶  Performance of the AP as a function of the number of rules 	

•  Our largest dataset: 218 rules
•  Maximum number of rules in the literature: 1729 [5]

–  Estimated Speed-up: 276X
[5] Brill, Eric. "Unsupervised learning of disambiguation rules for part of speech tagging." Proceedings of the third
workshop on very large corpora. Vol. 30. Association for Computational Linguistics, 1995

35

Entity Resolution (ER)
IEEE BigData ‘16	

▶  Identify matching records despite mismatches in key(s)

▶  E.g., names – typos, transliteration, different formats

§  Qaddaffi, Gaddaffi, etc.

§  FDR; Franklin Delano Roosevelt; Roosevelt, Franklin D., Pres.
Roosevelt, etc.

▶  Handle with variations of Hamming distance macro

Name “Adams”	

36

Running Time
▶  Running time of the AP

approach increases almost

linearly as databases

increase

▶  The AP approach works the

best for both SNAC and

DBLP databases

▶  At least 17x speedup is

achieved

▶  These speedups increase

with higher edit distance

37

Results Quality	

▶  Compression rate: record number after matching / original record

number

▶  Correct Pair number: every two records inside the group is counted

as one pair

▶  Generalized merge distance: numbers of merge and split operations

to convert results to “correct” results

	

Method	
 Comp

 Rate	

Correct
Pairs #	

Percent
age	

GMD	

Lucene	
 65.3%	
 262	
 80.6%	
 54	

Sorting	
 71.4%	
 233	
 71.7%	
 63	

Hashing	
 73.2%	
 213	
 65.6%	
 72	

Suffix-tree	
 73.2%	
 213	
 65.6%	
 72	

AP	
 57.2%	
 292	
 89.8%	
 31	

Manual	
 47.4%	
 325	
 100%	
 0	

Method	
 Correct
Pairs #	

Percen
tage	

GMD	

Sorting	
 502	
 74.4%	
 183	

Hashing	
 484	
 71.7%	
 212	

Suffix-tree	
 484	
 71.7%	
 212	

AP	
 615	
 91.4%	
 62	

Manual	
 675	
 100%	
 0	

Accuracy for SNAC Accuracy for DBLP

38

10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

0	
 150000	
 75000	
 50000	
 37500	
 30000	
 25000	
 21428	
 18750	
 16666	
 15000	

1	
 53571	
 25862	
 17045	
 12711	
 10135	
 8426	
 7211	
 6302	
 5597	
 5033	

2	
 35714	
 16304	
 10563	
 7812	
 6198	
 5136	
 4835	
 3826	
 3393	
 3048	

3	
 28846	
 12295	
 7815	
 5725	
 4518	
 3731	
 3177	
 2767	
 2450	
 2199	

4	
 25862	
 10135	
 6302	
 4573	
 3588	
 2952	
 2508	
 2180	
 1928	
 1728	

5	
 25000	
 8823	
 5357	
 3846	
 3000	
 2459	
 2083	
 1807	
 1595	
 1428	

Large Parallelism – String capacity

▶  The AP can process a large number of strings simultaneously

Mismatches or
Gaps allowed

Pattern
length

Number of strings that can be processed on one 1st generation AP board

39

Association Rule Mining, Frequent Itemsets
IPDPS ‘15

▶  Widely used building block in data mining to identify
associations, e.g. frequent itemsets
§  Example: {pen, ink, paper}

▶  Support: # occurrences to qualify
▶  Applications: market basket analysis, social network analysis,

categorization, text mining, anomaly detection, cybersecurity,
etc.
§  Ex: Traffic accident analysis: which events are strongly correlated

with accidents?

§  Ex: Words, phrases, or other patterns associated with specific
concepts

§  Ex: Intrusion detection

▶  AP can be used for learning as well as inference

40

Apriori Algorithm

▶  Classic “a priori” algorithm a good fit for AP

§  Relies on downward closure: k-itemset with support N must

include a k-1 itemset with support N

§  Identify large itemsets and prune search space by

identifying 2-itemsets, then 3-itemsets, etc.

§  AP’s large capacity can test many candidate itemsets in

parallel

§  Current gen is counter limited

▶  Compare to Eclat algorithm on CPU

§  Better on CPU than simple a priori

41

Sequential Pattern Mining (SPM)
ACM CF’16

Trans. Items

1 <{Bread, Milk}, {Coke}>

2 <{Bread, Milk, Chips}{Beer, Eggs}{Chips}>

3 <{Milk} {Chips} {Beer, Coke}>

4 <{Bread, Milk, Chips}{Beer, Chips}{Beer, Coke, Eggs}>

5 <{Bread, Milk}{Coke}{Chips}{Eggs}>

Bread Milk

Eggs

•  Now order among transactions matters (instead of looking at each
transaction in isolation)

42

Mapping FIS to the AP

Transactions

Itemset

AR
M

Frequency
counting

Input Stream

NFA by STEs

AP implementation

Counter
Element

Item Symbol
8-bit or 16-bit

Item Code
Bread 0
Milk 1

Chips 2
Beer 3
Coke 4
Eggs 5

Separator 255(\xFF)

Transaction stream:
01\xFF0235\xFF12345\xFF01234\xFF0124

Level%0% Level%1% Level%2% Level%3% Level%4%

Coun/ng%%
component%%

{Milk, Beer, Eggs}

43

Automata Design for SPM: Flattened

44

Performance Evaluation

0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06

10

100

1000

10000

 Eclat-1C (32nm)
 Eclat-6C (32nm)
 Eclat-1G (28nm)

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Relative Minimum Support

 Apriori-AP 45nm
 Apriori-AP 32nm
 Apriori-AP 28nm

Eclat-GPU
fails

Webdocs5X (7.1GB)

0.10 0.08 0.06 0.04 0.02 0.00
0.1

1

10

100

1000 PrefixSpan
 SPADE
 GSP-6C
 GSP-1G
 GSP-AP

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Relative Minimum Support
Bible

FIS SPM

45

Performance summary

▶  FIS: Up to 129X speedup over single-core CPU

implementation of Apriori and up to 49X speedup over

multicore-based and GPU-based implementations of Eclat

ARM

▶  SPM: Up to 430X, 90X, and 29X speedups are achieved

by the AP-accelerated GSP, when compared with the

single-threaded CPU, multicore CPU, and GPU GSP

implementations, respectively

46

Bioinformatics: CRISPR Sites Discovery

▶  CRISPR: Clustered Regularly Interspaced Short

Palindromic Repeats

▶  Each repeat is followed by a spacer DNA and the spacer

could be either the same or different

▶  Mismatches/gaps may be allowed in repeats

▶  Potential applications: genome engineering, RNA editing,

Biomedicine, etc.

47

AP Design

Fuzzy
macro

spacer
1

spacer
2

spacer
3

spacer
4

Mismatch fuzzy macro spacers

48

Preliminary Results

▶  Find 100 and 500 CRISPRs

▶  Allow different number of mismatches (1~5)

▶  Promising speedup achieved, from 40.7x to 402x

▶  Speedup is better for larger database

49

Random Forest on the AP
ISC’16

▶  Ensemble learning method for classification, etc

▶  Construct a multitude of decision trees, test all

▶  Randomly restricted to be sensitive to only selected

feature dimensions

▶  Reduces overfitting, better scalability

▶  Use AP for inference stage

50

Tree-Traversal to Pattern Matching?

▶  Restructure each Decision Tree into chains

§  Each chain represents a path through each tree in the

forest.

§  Do this for ALL trees in the forest.

F11

F2

F3 F4

0

1 2

3

5

0	
 1,2,3,4,5	

1,2	

1	
 2	

3,4,5	

3,4	
 5	

F12

4

3	
 4	

F11

0

~F11

F2

~F3

2

~F11

~F2

F4

3

~F11

~F2

~F4

5

F12

~F11

F2

F3

1

~F11

~F2

F4

4

~F12

Decision Tree Tree Paths

51

Experimental Results

▶  Twitter: The AP achieved a max 93x speedup over CPU

▶  MNIST: The AP achieved a max 63x speedup over CPU

▶  AP exhibits tradeoff in capacity: larger trees/strings =

fewer trees/strings per pass

51

52

Randomized Input
(ICCD’16)

 IDEA: randomize the input symbol stream

▶  Not using finite automata anymore

▶  What power does this give us?
§  AP allows conditional transitions based on input symbols

§  With randomized input, transition conditions are random!

•  Each character class now has a probability of being
recognized based on the distribution of random
input symbols

§  This means we can naturally build probabilistic automata (PA) on
the AP

•  Generalization of a Markov Chain

53

Markov Chain Examples

Sunny Rainy

Sunny 0.9 0.1

Rainy 0.5 0.5

Stochastic Transition Matrix (rows sum to 1)

BULL BEAR STAG

54

Markov Chain Example | “Fair Coin”

Heads Tails
Heads 0.5 0.5
Tails 0.5 0.5

For this example, we assume randomized input symbol
[0-9]

Heads Tails
Heads [01234] [56789]
Tails [02468] [13579]

Stochastic transition matrix

Stochastic symbol “buckets”

55

Hypothesis: Many parallel chains can create a
massive amount of parallel probabilistic behavior

One 8-bit
symbol
stream

56

Applications? PRNG or Agent-based
Simulation

PRNG
output

PRNG Consumer
(e.g., Monte Carlo

Simulation)

PRNG input
stimulus

SIR Epidemiological Model

57

Statistical tests are used to measure quality
of random output

▶  TestU01 Statistical Test Suite

If you pass BigCrush, you are
indistinguishable from random

Candidate input
integers

BigCrush
“You failed 3 tests!”

“We can’t find a
statistically significant
pattern in your input”

58

Results

▶  8-state chains sufficient

▶  Chain transitions need to be randomly generated

§  Need to reconfigure periodically

▶  Very high throughput possible

▶  Predict 6.8X better energy efficiency than GPU

Hierarchical Temporal Memory
▶  Recurrent Neural Network

(RNN) based on binary
synapses

▶  Performs, learning,
inference, and prediction
on a continuous stream of
inputs

▶  Has been used for
prediction, anomaly
detection, classification
tasks

▶  Key idea: Use AP as an
accelerator for HTM Proximal Dendrite

(synapses from column)

Cell activation logic

Distal Dendrite segments
(synapses from other cells) HTM Cell

Active Predicted

HTM Region

HTM Hierarchy

AP as HTM accelerator

HTM-AP Correspondences

HTM
▶  Lateral connections make

cell eligible to
activate

▶  External inputs activate
cell, propagating
activation

▶  Predictions are determined
based on past activations

AP
▶  Lateral connections from

matching STEs make STE
eligible to match

▶  STE matches if symbol on
global input matches
stored

▶  Next-state activations are
computed based on
current state and input
symbol

Key idea: Exploit many natural correspondences to
gain parallelism with AP

Benchmark Simulation Results
Benchmar
k

Base
error (%)

AP error
(%)

Base
runtime
(s)

AP
runtime
(s)

Speedup

Sine 13.6 14 2.05 4.59e-3 446

Hotgym 27 26.4 0.736 4.62e-3 159

NYCTaxi 11.6 8.8 8.76 63.9.e-3 137

Columns Cells STEs Counters Booleans

Sine 1,170 18,395 1,478,742 30,367 2,340

Hotgym 329 6,320 593,670 11,609 658

NYCTaxi 1,804 44,161 8,540,630 160,997 3,608

Key result: HTM model in AP offers 137-446X speedup
while preserving accuracy

ANMLZoo is a collection of 14 diverse automata
benchmarks and standard inputs that can be

used to evaluate automata processing engines
and architectures (IISWC’16)

Regular
Expression
Rulesets:
•  Snort
•  ClamAV
•  Dotstar (Becchi et

al.[1])
•  PowerEN[2]
•  Protomata
•  Brill Tagging

Mesh
Automata:
•  *Hamming
•  *Levenshtein

“Widgets”:
•  Sequential

Pattern
Mining[3]

•  Fermilab Particle
Tracking

•  Entity Resolution
•  Random Forests

Synthetic:
•  *Block Rings
•  *Core Rings

*Parametric code generation
 tools are included

ANMLZoo Cross-Architecture Evaluation
•  XeonPhi performance is lower than CPU performance because of

reduced frequency and per-thread cache
•  GPUs can outperform CPUs because of their superior latency hiding,

not because of SIMD computation
•  Reconfigurable fabrics can perform much better than von Neumann

architectures if the automata can be placed-and-routed into the
reconfigurable fabric

ANMLZoo Cross-Architecture Evaluation, cont.

•  Note substantial speedup even for “conventional” regex rulesets
•  But much higher speedup for applications with more complex

automata structures
•  Esp. high activity factors

•  Very promising early results for FPGAs as well
•  AP still better, but benefits of spatial architecture are clear

65

Automata Processing and Spatial
Architectures are very powerful for many

applications – not just regex!

▶  Brill tagging

▶  Entity resolution

▶  Association rule mining

▶  Bioinformatics – CRISPR

▶  Random Forest

▶  Markov processes

▶  Hierarchical temporal memory

▶  Automata benchmarking

66

AP Architecture
Ro

w
 A

dd
re

ss

(I
np

ut
 S

ym
bo

l)

 Row Access results in 49,152 match & route operations/chip
(then Boolean AND with “active” bit-vector)

Routing
Matrix

Automata Processor

•  Implements NFAs
 natively in hardware
•  Non-determinism very
 powerful for fuzzy matching
•  Massive parallelism

Figures courtesy of Micron

67

Many Exciting Research Questions
▶  Leveraging on-board FPGA

▶  Line-speed processing

▶  Cluster, datacenter-scale processing

▶  Processing pipelines
§  Including spanning multiple heterogeneous processing units

▶  New form factors
§  Make AP fully autonomous: CPU, memory, etc.

§  3D stacking

§  New interfaces directly to high-bandwidth data streams

▶  New architectures, more flexible than just automata
§  E.g., numerical range checking

§  Extensions for graph processing, more neural models

▶  New algorithms, libraries, etc.

▶  And many more…

68

Questions?

www.cap.virginia.edu

www.micronautomata.com

skadron@virginia.edu

