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Timely Topics

» Nuclear Nonproliferation: Gas migration through static fractures from an 
underground nuclear test.

» Brittle Material Failure: Dynamic fracture propagation and failure in brittle materials 
due to loading, e.g. Be alloys in aircraft wings, ceramics.

3



High Fidelity Model: Flow and Transport

» Discrete Fracture Network (DFN) models are one tool to simulate 
flow and transport through fracture networks in low permeability 
rocks.
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High Fidelity Model: Fracture Propagation

FDEM – Onset of 
Damage

FDEM – Final 
Damage

HOSS Validation Example

Experiments
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HOSS Meshing
§ 6 cm x 12 cm
§ 20,000 2-D elements 
§ 140 fractures
§ 4 hours w/ 400 processors
§ Petabytes of data in 3D



Problem Overview

IS&T Challenge: Structured systems represent a broad class of problems where the geometry 
and connectivity are critical to behavior. 
» Representing structure is computationally intensive (Data Science at Scale) 

» 1000s of runs needed to constrain topological uncertainty (UQ & Data Assimilation on reduced 
order models) 

High Fidelity 
Fracture Models

1 cell has 106-1010 dof

Continuum Model
Averaged microstructure 
properties ~103 – 104 cells

How do we efficiently relay 
microstructure
geometry and topology to 
macroscale models?

Method must scale in a UQ 
framework to account for 
uncertainties in geometry / 
topology

?



Our Novel Solution

Computationally intensive grids         Efficient graphs        Tractable UQ cycles
(Petabytes of data)                            (Terabytes of data)

Equivalent Graph 
Representation retains 

Geometry and Connectivity
103-107 degrees of freedom

High Fidelity 
Fracture Models

1 cell has 106-1010 dof

Continuum Model
Averaged microstructure 

properties ~ 103 – 104 cells

Graph G(size, length, location, orientation, betweenness centrality, eccentricity …)

Edge E12
Vertex V1 Vertex V2



Subsurface Flow and Transport Modeling
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Quantity of Interest: First Arrival 
Times in the Breakthrough curve

Nuclear Nonproliferation Hydraulic Fracturing in Shale

Quantity of Interest: 
Entire Breakthrough curve

Goal: Represent flow and transport in subsurface fracture networks efficiently 
and integrate into a robust UQ framework. 



Subsurface Modeling Workflow
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High Fidelity 
DFN

Graph 
Representation

QOI -
Breakthrough

Corrected 
Breakthrough

Pruned Graph Pruned DFN
QOI -

Breakthrough

ML / Physics 
Informed Pruning

G. Srinivasan, J.D.Hyman, D.Osthus, B.Moore, D.O’Malley, S.Karra, E.Rougier, A.Hagberg, A.Hunter, and H. Viswanathan. Quantifying 
topological uncertainty in fractured systems using graph theory and machine learning. Nature Scientific Reports, 2018. 

UQ / Bias 
Correction

Physics 
on Graph

Fractured Rock 
at Field Site



Data Driven Pruning with Machine Learning
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» Classification problem on
whether a vertex is on the 
flowing backbone

» 1st mapping where network 
topology properties are inherited 
by fractures (vertices)

» Leave out cross validation: 
train on 80, test on 20

» Compare transport 
breakthrough curves

» Ensure a connected path
» False positives better than 

false negatives

Use Random Forest and SVM to identify flowing backbone

Example Decision Tree



Feature Importance
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M. Valera, Z. Guo, P. Kelly, S. Matz, A. Cantu, A.G. Percus, J. D. Hyman, G. Srinivasan, and H.S. Viswanathan. 
Machine learning for graph-based representations of three-dimensional discrete fracture networks. Computational 
Geosciences, 2018

Combination of topological and flow features



Backbone Identification Through
Machine Learning
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Computational PerformanceQOI: Breakthrough Curves

Sufficiently accurate pruned network with 33% of the original fractures
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dfnWorks Shortest
Path 
Pruning

ML
Pruning



Physics-based Pruning
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Sufficiently accurate pruned network with only 35% of original network

» Threshold on flux on edges ensuring connected path
» Hydrologic properties like permeability can be inherited by edges 



Physics-based Pruning Results
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S. Srinivasan, J.D Hyman, S. Karra, H. Viswanathan, G. Srinivasan System Reduction of Discrete Fracture 
Networks through flow-physics on graph representations, Advances in Water Resources. 2018

QOI: Breakthrough Curves Computational Performance
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Transport on the Graph with Multiple Realizations
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The discrepancy from DFN and graph transport is systematic

S. Karra, D. O’Malley, J. D. Hyman, H.S. Viswanathan, and G. Srinivasan. Modeling flow and transport in fracture 
networks using graphs. Phys. Rev. E, 2018



UQ Model
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BTCF(t)   =   BTCG(t + θ)   +    δ(t)
Observation Calibration               Discrepancy

G. Srinivasan, J.D.Hyman, D.Osthus, B.Moore, D.O’Malley, S.Karra, E.Rougier, A.Hagberg, A.Hunter, and H. 
Viswanathan. Quantifying topological uncertainty in fractured systems using graph theory and machine learning, 
Scientific Reports, 2018

Bayesian UQ method -- Kennedy & O’Hagan, 2001 
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UQ Model
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BTCF(t)   =   BTCG(t + θ)   +    δ(t)
Observation Calibration               Discrepancy

G. Srinivasan, J.D.Hyman, D.Osthus, B.Moore, D.O’Malley, S.Karra, E.Rougier, A.Hagberg, A.Hunter, and H. 
Viswanathan. Quantifying topological uncertainty in fractured systems using graph theory and machine learning, 
Scientific Reports, 2018

Bayesian UQ method -- Kennedy & O’Hagan, 2001 
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Correcting Systematic Deviation 
17
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Graph
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Summary
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QOI: Breakthrough Curves Computational Performance

dfnWorks Shortest
Path 
Pruning

ML
Pruning

Physics-
based
Pruning
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ee
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H. S. Viswanathan, J. D. Hyman, S. Karra, D. O’Malley, S. Srinivasan, A. Hagberg, and G. Srinivasan. Advancing graph-based
algorithms for predicting flow and transport in fractured rock. Water Resour. Res., 2018

Corrected
graph

We can tailor the reduced order model depending on the QOI:
» Quick shortest path calculation if only early arrival is needed

» ML or physics-based pruning is effective but still requires mapping back to DFN(10X-100X speedup)

» Transport on the graph is 4 orders of magnitude faster but accurate for more complex cases?



Summary – Subsurface Flow and Transport 
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» We can tailor reduced order models to mimic high fidelity DFNs based on 
the quantity of interest

» Breakthrough curve QOI is quite forgiving so exact percolating path is 
need not be replicated by reduced order model

» For single phase flow and no in-fracture variability data driven and 
physics-based pruning are effective but graph transport is far more 
efficient and systematic deviations can be corrected



Brittle Failure Modeling

Goal: Represent physics of fracture evolution and coalescence resulting in an 
improved continuum-scale damage model for use in hydro-codes
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LANL Brittle Fracture Experiment, Cady, et al. LA-UR 11-06976 (2011)

Quantities of Interest: Time to Failure, Crack statistics and Damage Evolution



Brittle Failure Modeling Workflow
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Continuum model (FLAG)

Micro cracks 
in one cell
(HOSS) 

Constitutive model for 
Effective Moduli  

Computationally intensive

Constitutive model for 
Effective Moduli  

Dynamic 
Graphs + 
Machine 
Learning

Damage Evolution 
accounts for crack 

interactions

G. Srinivasan, J.D.Hyman, D.Osthus, B.Moore, D.O’Malley, S.Karra, E.Rougier, A.Hagberg, A.Hunter, and H. Viswanathan. Quantifying 
topological uncertainty in fractured systems using graph theory and machine learning. Nature Scientific Reports, 2018. 



HOSS runs: training/testing data

» 150 HOSS runs were performed for 
training (~1600 CPU hours each)

» 35 HOSS runs were used for testing
» 2D grid on a 2m-by-3m domain
» Bottom boundary is fixed, top boundary 

moves up at 0.1m/s, side boundaries 
move freely

» Each HOSS run contains 20 cracks
» Each crack is…

» …0.3m in length
» …randomly oriented at either 0, π/3, 

or 2π/3 radians
» …randomly located within a 6-by-4 

grid
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Overview of methods

» A diverse set of methods were explored that enabled us to find what 
works and what does not with cross-pollination between the methods
» Dynamic graphs

» Machine learning/data driven

» Simplified physics

» All of these methods are orders-of-magnitude faster than HOSS
» Typically run in O(CPU seconds) or less in comparison to HOSS which runs in 

O(CPU months)

» Our goals have been to understand rather than optimize, so there is room for 
further speed-ups

» There are no machine learning methods in the literature that bridge the 
gap between micro-scale and macro-scale codes

23

A. Hunter, B. Moore, M. Mudunuru, V. Chau, R. Miller, R. Tchoua, C. Nyshadham, S. Karra, D. O’Malley, E. Rougier, H. Viswanathan, G. Srinivasan. Reduced-
Order Modeling through Machine Learning Approaches for Brittle Fracture Applications., Journal of Computational Materials Science, accepted.



Evaluating the models

» We evaluate the models on two criteria
» The ability to predict the failure path

» The ability to predict the time at which 
failure occurs (for some methods)

» Failure means a crack has formed that 
connects the left and right boundaries

» Predicting the failure path means 
identifying the set of initial cracks that 
are part of the crack connecting the 
left and right boundaries
» This metric is harsher than typical ML 

metrics (e.g., “human level performance”) 
and gives no ”partial credit”
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Orthogonal Projection Approach
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Load

Train to predict dL based on 
(projected) crack length

Project orthogonally
to load

» Method was originally developed for a dataset with all horizontal fractures
» Adapted to this dataset based on the idea that Mode I (tensile) failure is the dominant 

crack propagation mechanism in these scenarios

Crack Length (L)
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Micro-crack Pair Informed Coalescence (McPIC) Approach

» Uses a two-step approach

» For each pair of cracks

» Step 1: Classify crack pairs as 
either coalescing or not

» Step 2: If coalescing, predict the 
time at which they coalesce

» The Ki are stress intensity factors

» DB is the distance to the nearer of 
the left and right boundaries

» f(…) has been implemented via 
neural nets, random forest, and 
decision trees

26

B. Moore, E. Rougier; G. Srinivasan; D. O'Malley; A. Hunter and H. Viswanathan, Predictive modeling of dynamic fracture growth in brittle 
materials with machine learning, Computational Material Science, 2018



Fracture Process Zone

» The fracture process zone (FPZ) is the zone where damage accumulates as cracks evolve
» FPZ contains micro-cracks near the crack tip

» These micro-cracks merge and extend the crack
» KTA-dominant zone is an asymptotic elastic zone that transitions from elastic to plastic

27

M. K. Mudunuru, S. Karra, G. Srinivasan, E. Rougier, H. S. Viswanathan, and L. Margolin, Predicting paths of least resistance
and time to failure for dynamic fracture using network theory, for Applied Soft Computing  (In Prep.)



Network-based Fracture Process Zone Approach
28

1. Identify cracks
orthogonal to loading

2. Use FPZ to identify
longest crack

3. Identify failure region

4. Prune via nearest
neighbors analysis

5. Identify failure path
with shortest path



Elliptical Process Zone Approach

» Uses an elliptical process zone

» When two ellipses overlap, the 
cracks will coalesce

» rn=γf(p)amn where p is a vector of 
material parameters

» Parameters such as γ and ellipse 
eccentricity are learned from data

» θm will be updated at each time 
step to orient the crack tip at (xn, 
yn) toward (xp, yp) as the crack tip 
grows

29



How well did the methods predict the path to failure?
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Failure
Type A

(single path)

Failure
Type B
(not quite

failed)

Failure
Type C

(branched)

Method Type 
A

Type 
B

Type 
C

Orthog.
Projection

9/20 2/10 0/5

McPIC 9/20 5/10 0/5

Network
FPZ

6/20 2/10 0/5

Ellipse
FPZ

4/20 1/10 0/5



How well did the methods predict the time of failure?
31

Only the orthogonal projection (OP), micro-crack pair informed coalescence 
(McPIC) and elliptical process zone (EPZ) approaches predict the time to failure



Lessons Learned: Goldilocks and the 4 models
32

Not enough
learning

from data

Too much
heuristic
physics

Richer feature set
enables learning,

some heuristic physics

Orthogonal
Projection McPIC Network

FPZ
Elliptical

FPZ



Emulating Stress from HOSS through ML

Using ML, we predict stress field in a HOSS simulation.
• Stress is predicted using a kernel PCA and “time stacked regression” 

from training data sets.
• The green lines indicate damage. Currently, work is being done to 

predict damage as well to get true HOSS emulation.

Emulated Stress True Stress



Prediction of Stress Field with Physics Informed 
Convolutional Neural Networks

Example Results
actual predicted

• 0.02 Mean-squared-error on held-out validation set
• Multi-scale parallel models combined with a 

convolutional layer – less grainy AND sharpness in 
high-stress areas



Summary – Brittle Failure 

» Dynamic graphs and ML enable the development of efficient emulators of 
crack propagation in brittle materials

» The winning algorithm is based on a combination of physics informed and 
data driven approaches

» QOI like time to failure, failure path and crack statistics can be predicted by 
our approach

» Since each HOSS simulation takes ~4 hours on 400 processors, ML 
algorithms that run in seconds to a few minutes offer promising speedup 
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Conclusions

» QOI in fractured systems are heavily dependent on topological 
uncertainties, so graph representations are a great way to retain the 
underlying structure using fewer dof.

» The successful algorithms that emulate detailed high fidelity behavior are 
based on a combination of physics informed and ML approaches.

» Graph-based ML based emulators can be trained to reproduce key QOI in 
the fractured systems considered here at significant computational savings.

» UQ framework utilizes 1000’s of runs of the cheap emulators and can bound 
uncertainties on QOI, which was previously out of reach due to 
computational burden.
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Thank you!

Questions?


