
Scalable Complex Analytics and 
DBMSs  

 
 

Michael Stonebraker 



2 

Simple Analytics 

•  SQL operations 
—  count, sum, max, min, avg 
—  Optional group_by 

•  Defined on tables 

•  User interface is Business Intelligence Tools 
—  Cognos, Business Objects, … 

•  Appropriate for traditional business 
applications 



3 

Simple Analytics 

•  Well served by the data warehouse crowd 

•  Who are good at this stuff  
—  even on petabytes 



4 

Complex Analytics 

•  Machine learning 
•  Data clustering 
•  Predictive models 
•  Recommendation engines 
•  Regressions 
•  Estimators 



5 

Complex Analytics 

•  By and large, they are defined on arrays 
•  As collections of linear algebra operations 
•  They are not in SQL! 
•  And often 

—  Are defined on large amounts of data 
—  And/or in high dimensions 



6 

Complex Analytics on Array Data –  
An Accessible Example 

 
•  Consider the closing price on all trading days for the 

last 20 years for two stocks A and B 
 
•  What is the covariance between the two time-

series? 
(1/N) * sum (Ai - mean(A)) * (Bi - mean (B)) 



7 

Now Make It Interesting … 

•  Do this for all pairs of 15000 stocks 
—  The data is the following 15000 x 4000 matrix 

Stock t1 t2 t3 t4 t5 t6 t7 …. t4000 

S1 

S2 

… 

S15000 



8 

Array Answer 

•  Ignoring the (1/N) and subtracting off the 
means …. 

 

Stock  *  StockT 
 
 



9 

Use Case Requirements 

•  Complex analytics 
—  Covariance is just the start 
—  Defined on arrays 
—  Graphs are just sparse arrays 
 

•  Data management 
—  Leave out outliers 
—  Just on securities with a market cap over $10B 

•  Scalability to many cores, many nodes and out-
of-memory data 

 



10 

Data Scientist Job Description 

•  Ignore the 80 - 90% of the time spent cleaning 
and assembling the data 

—  Separate talk on data curation 

•  Until (tired) { 
    Data management operation(s); 
    Complex analytics operations(s); 
    } 
 



11 

Solution Options for Data Management 

•  Hard Code 
—  Separate stack from the bare metal up for each project (LHS is 

40M lines of code) 
—  No uniform treatment of meta data (often encoded in the file 

name) 
—  Can’t share data easily 
—  Depends on the “cheap PostDoc” model 



12 

Solution Options for Data Management 

•  Use a DBMS 
—  Get sharing, indexing, protection, queries, crash recovery, …. 

•  Please, please, please use a DBMS 
—  If you get nothing else from this talk, please take note of this! 
—  Take a page from the business data processing playbook! 

•  Yabut – I can code a faster solution 
—  But you are dooming your successor to maintaining it! 
—  And requirements change!!!! 



13 

DBMS Options 

•  Traditional row store (Postgres, MySQL, Oracle, 
Big Table, ...) 
—  Stores the data on disk row-by-row 
—  Not competitive on data intensive queries 
—  For a collection of very good technical reasons 
 



14 

DBMS Options 

•  Column store (Vertica, Red Shift, DB2-Blu, 
Impala, …) 

—  Store the data column-by-column 
—  Easier to compress; much faster executor; often read less than 

all columns 
—  Generally 50 X row stores on this kind of stuff 

•  In the data warehouse market 
—  This technology is in the process of completely taking over 

 



15 

DBMS Options 

•  Array store (SciDB, Rasdaman, HDF-5) 
—  Data model is an array, not a table 
—  Query language is typically array-SQL 
—  Store the data in multi-dimensional tiles (chunks) 

•  Advantages 
—  Same conceptual model as linear algebra  
—  No table to array conversion required (which is very slow) 
—  Dimensions are not stored (space advantage) 
—  Multi-dimensional queries are very very fast, since the storage 

structure is “chunked” 



Array Query Language (AQL) 

SELECT Geo-Mean ( T.B )
FROM Test_Array T 
WHERE 
    T.I BETWEEN :C1 AND :C2 
AND T.J BETWEEN :C3 AND :C4
AND T.A = 10
GROUP BY T.I;
 
 

User-defined aggregate on an 
attribute B in array T 
 
Subsample 
 
Filter 
Group-by 



17 

DBMS Options 

•  Map-Reduce (open source version is Hadoop) 
—  Good for embarassingly parallel problems only 
—  Which this stuff is not!!! 
—  Abandoned by Google in 2011 (or so) 
—  Cloudera has a DBMS (Impala) – NOT built on Map-Reduce 

 

•  This interface is essentially dead 



18 

Two Things to Keep in Mind (1) 
(Data Base 101) 

 

 

•  Always send the query to the data (Kbytes) 
—  Minimizes data comm  

•  Do not bring the data to the query (Tbytes)! 
—  Forward pointer to HPC 

 
 
 



19 

Two Things to Keep in Mind (2) 

 

•  On matrix multiply, there are five orders of 
magnitude difference between Python and 
Intel-optimized C++ 

•  Example 
—  One order of magnitude between LaPack/BLAS/MKL and 

“smart Russians in C++” 
—  Java is another order of magnitude down (Spark, Mahout, …) 

•  Very difficult to compete with optimized 
packages and Intel engineers!!! 
 

 
 



20 

Analytics Options 

 

•  Code in SQL 
—  Matrix multiply is a 3-way self join 
—  If the data is sparse enough, this may be ok 
—  On dense data this will be a disaster (SQL and Python are 

likely to have similar performance) 

•  Madlib is a package that did this 
—  And was quickly recoded in C++ 

•  Bill Howe will probably have a different 
opinion 

—  I suspect 

 
 
 



21 

Analytics Options (Loose Integration) 

 

•  Code in a stat package (R, SAS, SPSS, 
Mahout, …) 

—  Copy the world from the DBMS to the package (slow) 
—  Learn 2 interfaces  
—  You’re in the plumbing business! 
—  Parallel packages are just coming into existence 
—  Most stat packages are main-memory only 

•  I don’t like this option at all! 
—  Long term slog through the swamp 

 
 
 



22 

Analytics Options (Tight Integration) 

 

•  Run stat code as a user-defined function 
—  Inside the DBMS  
—  Called through extensions to SQL 

 
 
 



Example Query 

SELECT A.i * B.j
FROM A, B
WHERE 

A.k > 100 and
B.m < 200

 
 



24 

Analytics Options (Tight Integration) 

 

•  Learn one interface 
•  No “copy the world” problem 
•  Run stat code as a user-defined function 

—  Inside the DBMS 
—  Automatic parallelism (at least in SciDB) 

 
 
 



25 

(Some of the) Detailed Options 

•  Loose coupling 
—  {R, SAS, SPSS} + your favorite DBMS 

•  Tight coupling 
—  SciDB + Scalapack  
—  SciDB + R 
—  Vertica + R 



26 

A Note on Hadoop/HDFS 

•  Impala is not coded on top of HDFS 
—  Drills through to underlying Linux files 
—  Looks exactly like a parallel column store (e.g. Vertica, 

Redshift, …) 

•  “Hadoop market”  and “data warehouse 
market” are converging 

•  Current marketing slogo is “data lakes” 
—  Creates a data swamp by ignoring data curation issues 
—  Or a junk drawer 

 



27 

A Note on Spark 

•  70+% of Spark access is SparkSQL 
•  However, Spark has 

—  No persistence 
—  No meta data 
—  No main memory sharing 
—  Java (slow) 

•  I expect all of this to get fixed over time 
—  And Spark will follow the trajectory of Hadoop to become a 

data warehouse market 

•  Remainder is Scala (slow) 
—  Remains to be seen how Spark will play in the general 

distributed computing space…. 

 



28 

Issues in Using ScalaPack in SciDB  

 

•  Block cyclic organization  
—  which DBMS does not support 

•  MKL  
—  Which DBMSs won’t use for crash recovery issues 

•  Tile organization 
—  Scalapack is dense-only 
—  SciDB is a single format for dense and sparse 

 
 



29 

The Future 

 

•  Co-design of analytics and DBMS storage 
organization 

—  To get rid of these issues 
—  Intel-supported project at MIT and UTenn 

 
 



30 

An Exercise at NERSC 
 

 

•  General NERSC architecture is  
—  A compute server 
—  A storage server 
—  A compute-side file cache; scheduled in advance 

 



31 

Issues 
 
 

 

•  DBMS wants to be “always on” service 
—  Incompatible with scheduling the file cache 

•  Send the data to the query not the other 
way around 

—  Every time somebody wants data access, need to move the 
world  

 



32 

At NERSC 
 
 

 

•  SciDB runs 
—  Managing many, many Tbytes of data 
—  On dedicated nodes 

•  Could not get Vertica to run at all 
—  Painful aspects of batch job focus (scheduling the file 

cache; open file limit) 
 



33 

Summary 

 

•  Stand on the shoulders of those who went 
before you, not on their feet 

—  Please don’t write a complete stack for each new project 

•  Want to tightly couple DBMSs and linear 
algebra 

—  Or you get 2 interfaces  
—  And copy the world 

 
 



34 

Summary 

 

•  Array DBMSs are likely to be attractive 
—  Check out SciDB.org 

•  Hadoop and Spark will probably morph into 
something that looks like a DBMS 

—  Turkey performance in the meantime 

•  HPC needs to become interactive 
—  Or DBMSs probably won’t run there 

 
 


