Scalable Complex Analytics and DBMSs

Michael Stonebraker

Simple Analytics

- SQL operations
 - count, sum, max, min, avg
 - Optional group_by
- Defined on tables
- User interface is Business Intelligence Tools
 - Cognos, Business Objects, ...
- Appropriate for traditional business applications

Simple Analytics

- Well served by the data warehouse crowd
- Who are good at this stuff
 - even on petabytes

Complex Analytics

- Machine learning
- Data clustering
- Predictive models
- Recommendation engines
- Regressions
- Estimators

Complex Analytics

- By and large, they are defined on arrays
- As collections of linear algebra operations
- They are not in SQL!
- And often
 - Are defined on large amounts of data
 - And/or in high dimensions

Complex Analytics on Array Data An Accessible Example

- Consider the closing price on all trading days for the last 20 years for two stocks A and B
- What is the covariance between the two timeseries?

```
(1/N) * sum (A_i - mean(A)) * (B_i - mean (B))
```


Now Make It Interesting ...

- Do this for all pairs of 15000 stocks
 - The data is the following 15000 x 4000 matrix

Stock	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	 t ₄₀₀₀
S ₁								
S ₂								
•••								
S ₁₅₀₀₀								

Array Answer

• Ignoring the (1/N) and subtracting off the means

Stock * Stock^T

Use Case Requirements

- Complex analytics
 - Covariance is just the start
 - Defined on arrays
 - Graphs are just sparse arrays
- Data management
 - Leave out outliers
 - Just on securities with a market cap over \$10B
- Scalability to many cores, many nodes and outof-memory data

Data Scientist Job Description

- Ignore the 80 90% of the time spent cleaning and assembling the data
 - Separate talk on data curation

```
    Until (tired) {
        Data management operation(s);
        Complex analytics operations(s);
        }
    }
```

Solution Options for Data Management

Hard Code

- Separate stack from the bare metal up for each project (LHS is 40M lines of code)
- No uniform treatment of meta data (often encoded in the file name)
- Can't share data easily
- Depends on the "cheap PostDoc" model

Solution Options for Data Management

- Use a DBMS
 - Get sharing, indexing, protection, queries, crash recovery,
- Please, please use a DBMS
 - If you get nothing else from this talk, please take note of this!
 - Take a page from the business data processing playbook!
- Yabut I can code a faster solution
 - But you are dooming your successor to maintaining it!
 - And requirements change!!!!

- Traditional row store (Postgres, MySQL, Oracle, Big Table, ...)
 - Stores the data on disk row-by-row
 - Not competitive on data intensive queries
 - For a collection of very good technical reasons

- Column store (Vertica, Red Shift, DB2-Blu, Impala, ...)
 - Store the data column-by-column
 - Easier to compress; much faster executor; often read less than all columns
 - Generally 50 X row stores on this kind of stuff
- In the data warehouse market
 - This technology is in the process of completely taking over

Array store (SciDB, Rasdaman, HDF-5)

- Data model is an array, not a table
- Query language is typically array-SQL
- Store the data in multi-dimensional tiles (chunks)

Advantages

- Same conceptual model as linear algebra
- No table to array conversion required (which is very slow)
- Dimensions are not stored (space advantage)
- Multi-dimensional queries are very very fast, since the storage structure is "chunked"

Array Query Language (AQL)

```
SELECT Geo-Mean ( T.B )

FROM Test_Array T

WHERE

T.I BETWEEN :C1 AND :C2

AND T.J BETWEEN :C3 AND :C4

AND T.A = 10

GROUP BY T.I;
```

User-defined aggregate on an attribute B in array T

Subsample

Filter Group-by

- Map-Reduce (open source version is Hadoop)
 - Good for embarassingly parallel problems only
 - Which this stuff is not!!!
 - Abandoned by Google in 2011 (or so)
 - Cloudera has a DBMS (Impala) NOT built on Map-Reduce
- This interface is essentially dead

Two Things to Keep in Mind (1) (Data Base 101)

- Always send the query to the data (Kbytes)
 - Minimizes data comm
- Do not bring the data to the query (Tbytes)!
 - Forward pointer to HPC

Two Things to Keep in Mind (2)

- On matrix multiply, there are five orders of magnitude difference between Python and Intel-optimized C++
- Example
 - One order of magnitude between LaPack/BLAS/MKL and "smart Russians in C++"
 - Java is another order of magnitude down (Spark, Mahout, ...)
- Very difficult to compete with optimized packages and Intel engineers!!!

Analytics Options

- Code in SQL
 - Matrix multiply is a 3-way self join
 - If the data is sparse enough, this may be ok
 - On dense data this will be a disaster (SQL and Python are likely to have similar performance)
- Madlib is a package that did this
 - And was quickly recoded in C++
- Bill Howe will probably have a different opinion
 - I suspect

Analytics Options (Loose Integration)

- Code in a stat package (R, SAS, SPSS, Mahout, ...)
 - Copy the world from the DBMS to the package (slow)
 - Learn 2 interfaces
 - You're in the plumbing business!
 - Parallel packages are just coming into existence
 - Most stat packages are main-memory only
- I don't like this option at all!
 - Long term slog through the swamp

Analytics Options (Tight Integration)

- Run stat code as a user-defined function
 - Inside the DBMS
 - Called through extensions to SQL

Example Query

```
SELECT A.i * B.j
FROM A, B
WHERE
A.k > 100 and
B.m < 200
```


Analytics Options (Tight Integration)

- Learn one interface
- No "copy the world" problem
- Run stat code as a user-defined function
 - Inside the DBMS
 - Automatic parallelism (at least in SciDB)

(Some of the) Detailed Options

- Loose coupling
 - {R, SAS, SPSS} + your favorite DBMS
- Tight coupling
 - SciDB + Scalapack
 - SciDB + R
 - Vertica + R

A Note on Hadoop/HDFS

- Impala is not coded on top of HDFS
 - Drills through to underlying Linux files
 - Looks exactly like a parallel column store (e.g. Vertica, Redshift, ...)
- "Hadoop market" and "data warehouse market" are converging
- Current marketing slogo is "data lakes"
 - Creates a data swamp by ignoring data curation issues
 - Or a junk drawer

A Note on Spark

- 70+% of Spark access is SparkSQL
- However, Spark has
 - No persistence
 - No meta data
 - No main memory sharing
 - Java (slow)
- I expect all of this to get fixed over time
 - And Spark will follow the trajectory of Hadoop to become a data warehouse market
- Remainder is Scala (slow)
 - Remains to be seen how Spark will play in the general distributed computing space....

Issues in Using ScalaPack in SciDB

- Block cyclic organization
 - which DBMS does not support
- MKL
 - Which DBMSs won't use for crash recovery issues
- Tile organization
 - Scalapack is dense-only
 - SciDB is a single format for dense and sparse

The Future

- Co-design of analytics and DBMS storage organization
 - To get rid of these issues
 - Intel-supported project at MIT and UTenn

An Exercise at NERSC

- General NERSC architecture is
 - A compute server
 - A storage server
 - A compute-side file cache; scheduled in advance

Issues

- DBMS wants to be "always on" service
 - Incompatible with scheduling the file cache
- Send the data to the query not the other way around
 - Every time somebody wants data access, need to move the world

At NERSC

SciDB runs

- Managing many, many Tbytes of data
- On dedicated nodes
- Could not get Vertica to run at all
 - Painful aspects of batch job focus (scheduling the file cache; open file limit)

Summary

- Stand on the shoulders of those who went before you, not on their feet
 - Please don't write a complete stack for each new project
- Want to tightly couple DBMSs and linear algebra
 - Or you get 2 interfaces
 - And copy the world

Summary

- Array DBMSs are likely to be attractive
 - Check out SciDB.org
- Hadoop and Spark will probably morph into something that looks like a DBMS
 - Turkey performance in the meantime
- HPC needs to become interactive
 - Or DBMSs probably won't run there