

Leveraging Semantic Context to Establish Access Controls for Secure Cloud-Based EHRs

Redwan Walid*, Karuna P. Joshi*, Seung Geol Choi▶ *University of Maryland, Baltimore County United States Naval Academy

Email: rwalid1@umbc.edu, kjoshi1@umbc.edu, choi@usna.edu

Motivation

With the growth of healthcare systems and data, medical organizations are concerned about storing data to provide fast services while adhering to healthcare regulations.

heterogeneous medical The data makes it challenging for the existing healthcare systems as they often use relational databases.

The data retrieval performance current systems the of decreases with the increasing patient data, and they fail to adapt to changes with time due to having a fixed schema.

Approach

The knowledge graph handles functions such as system attribute based access control, attribute based encryption, revocation, attribute user searchable encryption, and data storing.

The knowledge graph stores encrypted data in the nodes that can maintain stable performance handle and heterogeneous data.

System Architecture

The system is split into two sections: Authorization Module and Data Computation Module within the organization and Cloud Service Provider outside the organization boundary. Authorization module allows user request checks, access control and semantic reasoning. Data Computation Module allows data cryptography, search token generation, encrypted index building, and attribute revocation.

Knowledge Graph

Performance Evaluation

The tables show the query performances in the system with flat files and the new system and highlight the percentage decrease it time for different use COSES.

	Query Performances With Flat Files					
Data size	Retrieve (and Decrypt) (s)	Search (s)	Revoke (s)			
40,000	0.0172066	0.1847897	0.0193267			
80,000	0.0174678	0.3376495	0.0184021			
120,000	0.0173397	0.493178	0.0176004			
160,000	0.0182211	0.6392195	0.0175358			
200,000	0.0186612	0.7903189	0.0167967			

	Query Performances In the New System					
Data size	Retrieve (and Decrypt) (s)	Search (s)	Revoke (s)			
40,000	0.0103081	0.1847897	0.0106127			
80,000	0.0106438	0.3376495	0.0102164			
120,000	0.0103354	0.493178	0.0105571			
160,000	0.0102828	0.6392195	0.0105158			
200,000	0.0108574	0.7903189	0.0100075			

	Percentage Decrease in Query Time for Different Data Sizes in New System						
Use Case	40,000	80,000	120,000	160,000	200,000		
Decrypt (and Retrieve)	40.09%	39.07%	40.40%	43.57%	41.82%		
Revoke	45.09%	44.48%	40.02%	40.03%	40.42%		