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Triangles

Triangle-based analytics are important in many
larger data-analytics based applications. Previ-
ously, a highly efficient linear algebra-based algo-
rithm has been developped in Kokkos-Kernels
Primary contributions:
}We improve upon that work by developing an
SpGEMM implementation that relies on a highly
efficient, work-stealing, multithreaded runtime.

}We demonstrate that our implementation
results in improving the runtime up to 5× to
12× on different architectures

Triangle Counting
A triangle can be defined as a set of three mutually
adjacent vertices in a graph.

Triangle Counting Problem
Given a graphs G = {V, E}, the triangle counting
problem is to find the number (T ) of all set of three
vertices, u, v, w ∈ V , such that:

T =| {u, v, w | (u, v), (v, w), (w, u) ∈ E} | .

Linear Algebra Formulations
Two linear-algebra based formulations of triangle
counting that are based on the adjacency matrix
of the graph: L and U represent lower and upper
parts
}LU algorithm; D = (L · U). ∗ L
◦ (Pro): Low operation count,
◦ (Con): Poor scalability

}LL algorithm; D = (L · L). ∗ L
◦ (Pro): Good scalability,
◦ (Con): More operations than LU

kkTri-Cilk Algorithm
Parallelization strategy and the runtime are the main differences between KKTri-Cilk and KKTri.
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LU Alg: L Matrix

}Rows are ordered for avoiding computation:
◦LL; in decreasing degree,
◦LU ; in increasing degree

}Balance number of non-zeros within each partition.
}Each partition is spawned (in parallel) as a task.
◦A task runs matrix matrix multiplication within a partition.

Triangle Counting Scalability
Letting dv be the degree of vertex v, the 4/3-moment is
defined as: E[d4/3

v ] = 1/n
∑

v(d4/3
v ).

0

100

200

300

400

500

600

700

800

900

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.E+06 1.E+07 1.E+08 1.E+09

4/
3-
m
om

en
t

Ti
m
e	
(m

s)

|E|

Time	(ms) (|E|^(4/3))*1.0E-7 4/3	moment

Scale Graphs
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Non Scale Graphs

}m4/3 (Graph Challenge 2017 regression line) predicts
the trends effectively in the Scale graphs.

} 4/3-moment is correlated with the runtime for both
Scale and Non-Scale graphs.

Graph Type Time-per-vertex Time-per-edge
E

4
3 4

3-moment E
4
3 4

3-moment
Scale graphs 0.90 0.98 0.89 0.98

Non-scale graphs 0.26 0.95 0.02 0.76

Per-vertex/edge runtimes are highly correlated with the
4/3-moment, as predicted "by past theory".

Experiments: Strong Scaling
Following figures show strong scaling experiments for OpenMP and
Cilk implementations of two algorithms.
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}KKTri-Cilk scales the best in all three problems
} uk-2005 achieves best rate: highly local computations.
} scale24 achieves worst rate: Poor cache usage.
} Friendster graph’s distribution is in between (best scalability).

Experiments: Relative Speedup
Comparisons of KKTri-Cilk with TCM, a state-of-the-art graph library.
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}KKTri achieves up to 7× speedup on graphs that have a good natural ordering such as wb-edu, uk-2005,
and uk-2007. KKTri outperforms TCM in 23 of 27 cases.

Experiments: Dataset and Peak Rate
Times highlighted in green when KKTri-Cilk is the fastest.
} 109 barrier is passed for the uk-2005 matrix and wb-edu graph.
}A high correlation (0.91) between the conductance and the rate.

Data Set 1 − Cd Time (s) Rates
Skylake Haswell KNL

cit-HepTh 0.141 0.003 1.20E+08 8.24E+07 1.54E+07
email-EuAll 0.112 0.003 1.16E+08 1.10E+08 2.16E+07
soc-Epinions1 0.086 0.004 1.06E+08 6.72E+07 2.44E+07
cit-HepPh 0.091 0.004 1.11E+08 8.77E+07 2.47E+07
soc-Slashdot0811 0.067 0.004 1.18E+08 7.97E+07 2.71E+07
soc-Slashdot0902 0.069 0.003 1.57E+08 8.64E+07 2.77E+07
flickrEdges 0.098 0.013 1.85E+08 1.15E+08 2.99E+07
amazon0312 0.229 0.006 3.87E+08 2.51E+08 9.34E+07
amazon0505 0.233 0.006 3.79E+08 2.75E+08 9.36E+07
amazon0601 0.276 0.006 4.17E+08 2.87E+08 9.81E+07
scale18 0.059 0.031 1.24E+08 1.07E+08 2.88E+07
scale19 0.058 0.075 1.04E+08 8.06E+07 2.79E+07
as-Skitter 0.17 0.026 4.23E+08 3.23E+08 1.23E+08
scale20 0.059 0.184 8.53E+07 5.63E+07 2.50E+07
cit-Patents 0.027 0.028 5.82E+08 4.21E+08 1.22E+08
scale21 0.059 0.511 6.21E+07 4.78E+07 2.01E+07
soc-LiveJournal1 0.242 0.137 3.14E+08 2.28E+08 1.07E+08
wb-edu 0.938 0.042 1.10E+09 6.55E+08 1.48E+08
scale22 0.058 1.581 4.05E+07 3.50E+07 1.71E+07
scale23 0.059 3.786 3.41E+07 2.62E+07 1.45E+07
scale24 0.059 10.282 2.53E+07 2.04E+07 1.21E+07
scale25 0.059 25.652 2.04E+07 1.88E+07 9.11E+06
uk-2005 0.925 0.684 1.14E+09 9.35E+08 2.59E+08
it-2004 0.942 1.293 7.95E+08 5.86E+08 1.47E+08
twitter 0.126 28.359 4.24E+07 4.46E+07 N/A
friendster 0.182 18.552 9.74E+07 7.93E+07 N/A
uk-2007 0.968 3.545 9.31E+08 7.49E+08 N/A

Conclusion
}KKTri-Cilk surpasses 109 for the rate measure.
}KKTri-Cilk is faster on 63 of 78 instances
}KKTri-Cilk is faster than state-of-the-art graph based

implementation (up to 7×)
}We corroborate that the scalability of the triangle counting is

bounded by O(n) when the 4/3-moment is bounded
}We show correlation between the high rates achieved and the

conductance of the graph
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